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Block 20 cont'd

N

The Jellybean Machine is a scalable MIMD concurrent processor consisting of special-purpose RISC pro-
cessors loosely coupled into a low latency network. The problem with such a machine is to find a way to
efficiently coordinate the collective power of the distributed processing elements. A foundation of efficient,
powerful services is required to support this system.

To provide this supportive operating environment, I developed an operating system kernel that serves
many of the initial needs of our machine. This Jellybean Operating System Software provides an object-
based storage model, where typed contiguons blocks act as the basic metric of storage. This memory model
is complemented by a global virtual naming scheme that can reference objects residing on any node of the
network. Migration mechanisms allow object relocation among different nodes, and permit local caching of
code. A low cost process control system based on fast-allocated contexts allows parallelism at a significantly
fine grain (on the order of 30 instructions per task).

The system services are developed in detail, and may be of interest to other designers of fine grain,
distributed memory processing networks. The initial performance estimates are satisfactory. Optimizations
will require more insight into how the machine will perform under real-world conditions:w
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Chapter 1

Introduction

I am the people — the mob — the crowd — the mass
Do you know that all the great work of the world is done through me?

— CARL SANDBURG, in I Am the People, the Mob (1916)

Pouwer is the great aphrodisiac.

— in The New York Times (January 19, 1971)

Concurrent processing is becoming a progressively more popular field in computer
science. The vision of harnessing previously undreamt of computational power at a reason-
able cost is leading the drive. By connecting many moderately powerful microprocesors in a
communications medium, system designers hope to be able to take advantage of the collec-

tive power of the architecture to solve tasks that were previously time or cost-prohibitive.

Unfortunately, the eager concurrent system designer soon finds that many issues
are still unresolved. Though people have a fairly good grasp of ways to build successful
sequential machines, it is less clear how to build optimal, or even acceptable concurrent
systems. The designer is soon faced by a barrage of questions that are difficult to answer.

“What grain of parallelism should be supported?” “What level of functionality should the
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processors provide?” “How should the processors communicate?” “How tightly coupled
should the processors be?” “How should memory be managed?” “How should the load be
distributed?”. Many research groups are attempting to answer these questions at this very

moment.

Some insight into concurrent architectures has been gained over the years, and
the current directions of research reflects the knowledge gained. Multicomputer networks
(sometimes calied “ensemble machines”) are one direction that concurrent systems research
has taken. This genre of machine connects relatively conventional microprocessors via an
automatically routed network. The design is advantageous because it takes advantage of well
understood sequential processor technology for the processing nodes, and the performaace of

the system can grow proportionately with the number of processors!, providing scalabstity.

For the past two years, the Concurrent VLSI Architecture Group at M.I.T. has been
designing a concurrent processing network, christened the Jellybean Machine, under the
direction of Professor William Dally {Dal86c). The goal of the Jellybean Machine project is
to design a scalable concurrent processor out of low-priced (jellybean) parts, that efficiently
supports an object-oriented execution model. The processor is targeted at both symbolic
and numeric applications, and will be programmed in high-level, ob ject-oriented languages.
It hopefully will serve as a succesful example and a test bed for a.dvanéed concurrent cystems

research.

1.1 Scope of Thesis

This thesis rep...t describes the design and implementation of an operating system prototype
for the J-Machine. The operating system was required to support a global namespace across
the distributed processors, allocate memory in an object-based storage model, support

!at least up to some point.
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inter-processor communication, provide system services to control code execution, object
migration, and an object-oriented calling model. It also provided a perch from which more
advanced issues in system design could be studied.

1.2 Highlights of Contributions

In the course of the design of the J-Machine operating system, several ideas were developed
that may be of special interest to the designer of multicomputer networks.

o In section 3.4, I describe a virtual addressing system that resolves objects names
across distributed nodes by a mechanism known as Aometown addressing. This scheme
delegates to object birthnodes the responsibility for knowing current object residences,
permitting object migration. An accompanying mechanism of “hints” is provided to

improve performance.

¢ To simplify the hardware with minimal cost in flexibility, we have developed an ex-
plicit, one time virtual translation scheme via the XLATE machine instruction, that
converts a virtual address to a physical one. Retranslation is provided for automati-
cally by fault handlers.

o Chapter 5 describes a low overhead code execution model that supports inexpensive
remote procedure calls, local caching of code, and convenient suspension and resump-
tion of processes.

o Section 5.4 describes a system for fast context creation that involves the re-use of old
context objects. This is an important optimization based on the short life and rapid
g S freqency of context allocation.

¢ Section 5.6 outlines a simple and fast, resource distribution mechanism that limits
tl_)ottl:necks and cross network traffic by dynamically creating a type distribution tree
F , or the resource.
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1.3 A Closer Look At The Jellybean Machine

The J-Machine is composed of many custom RISC microprocessors called Message-Driven
1# Processors or MDPs. These processing elements have small, local memories and are con-
nected in a loosely coupled network. Inter-node communication is provided via message
| sends that are automatically routed to the proper destination nodes. A virtual object-
based memory abstraction is built over the distributed nodes providing a uniform global
namespace. Various levels of low-cost execution control provide a reasopably fine grain
of concurrency (on the level of 30 instruction procedures). An object-oriented execution
model is bi'.t upon this fine-grain execution model. The rest of the system implements

miscellaneous system services and mechanisms to improve performance.
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1.4 Background

Concurrent architecture design has been seriously studied for at least the past fifteen years,
but there is still much to be learned. The various visions of machines, operating systems,

and target applications are so diverse, that few definitive statements can be made.

We see SIMD parallelism, promoted by vector operations as seen in the Cray. More
complicated architectures like the Connection Machine [Hil85], and systolic array processors
like the Warp [Kun82] are alternative approaches, providing fine-grain concurrency with
repetitive processing while permitting reconfiguration. MIMD architectures are just as
diverse. There are extremely fine-grain dataflow machines like the Manchester Machine,
Sigma-1, and the MIT Tagged-Token datafiow Machine [Aea80], bus-based shared memory
architectures like the IBM RP3, Inmos Transputer, and C.mmp (WLHS81], multicomputer
networks like the Cosmic ¢ :be [Sei85) and Cm* [0SS80] and distributed systems like System
R* [Lin80).

The Jellybean Machine, while borrowing ideas from successful research endeavors,
has goals unique enough to gain a somewhat different character from other machines of
its genre. It communicates via message passing and addresses only local memory, as in
the Cosmic Cube (Sei85) and the Medusa system [0SS80]. On the other hand, these two
systems control execution by a system of pipes and locks, where processes wait for data to
arrive via messages. The J-Machine, instead, uses message sends to schedule processes, and
not to provide socket-to-socket communication. State manipulation doesn’t involve explicit
connections between running processes. Instead, return values are propagated around to

slots in contexts and code is executed when results arrive in a more “functional” manner.

Many systems also have virtual memory and some systems use an object or segment
based storage model [WLHS1) as does the J-Machine, but the emphasis is slightly different

in our design. Where most systems use a virtually addressed, multi-level memory system

o~




o e e ——

CHAPTER 1. INTRODUCTION 13

to expand primary memory and provide relative address mapping, the J-Machine uses a
virtual addressing system to provide a giobal namespace across all nodes and to provide
convenient access to objects as the primitive memory metric. This is more similar to large,
complex-distributed systems such as IBM’s distributed database, System R* [Lin80] than

conventional parallel processors. .

Finally, the J-Machine targets itself to a high-level programming environment. The
RISC procescing node, called the Message-Driven Processor [HT88), provides a fast, power-
ful substrate for the execution of high-level languages, such as Smalltalk. There are several
architectures designed for the efficient execution of high-level language applications, such
as the Symbolics Lisp Machine and the SOAR Smalitalk processor [Ung87], but very little
work has been done targeting concurrent processors to high-level languages.

1.5 Organization

The rest of this report will discuss the structure of the Jellybean system. Chapter 2 provides
a high level layering of the Jellybean system — from single processing node hardware to the
high level programming of the entire concurrent processing network. Chapter 3 describes
the memory management and addressing system. Chapter 4 discusses the machine as a
distributed system supporting object migration to balance load. Chapter 5 explains code
execution on the method level, and 6 details the object-oriented calling extensions. Storage
reclamation issues will be introduced in chapter 7. Chapter 8 discusses some of the services
provided to support high-level language constructs and to control code execution. Chapter
9 describes t* 2 prototype operating system implementation noting its successful as well as
not-so-successful features, and discussing some of the difficulties and quirks faced by the
system designer. The report concludes with a performance evaluation and summary in

chapters 10 and 11.
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Chapter 2

The Execution Model of the
Jellybean Machine

These unhapﬁ times call for the building of plans ...
that build from the bottom up and not from the top doun

— FRANKLIN DELANO ROOSEVELT, in his April 17, 1932 Radio Address

The Jellybean Operating System Software (JOSS) is built in a layered manner where
each layer provides a different model of functionality to the machine. Figure 2.1 attenipts to

describe this layering, and what new functionality each layer provides to the entire system.

- —

At the bottom of the figure lies the base processor and boot code. At this stage,
the processing node can be initialized, and can run independently as a limited micropro-
cessor. The addition of system call and fault handlers provide a level of system services
and robustness to the microprocessor, allowing it to allocate meinory in an object-based,
virtually addressed manner, and to handle various types of exceptional copditions at run
time. These first two levels of the Jellybean system build up the abstract processing node

14
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Ezecution Model

High Level Languages

Intermediate Code

SEND Message Handler

CALL Message Handler

Primitive Message Support

System Calls
and
Fault Handlers

Machine Code

Functionality o

User programming langunge

Simple machine independent target language
Class/Selector calling model

Remote Method Calls

Communication

Distributed Namespace
Concurrent computing
Object-based memory allocation
Optimistic code generation
Virtual Namespace

Assorted System Services

Simple instruction set, tagged, local memory

" Fest pelority switches

Figure 2.1: Layering of Jellybean System
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CHAPTER 2. THE EXECUTION MODEL OF THE JELLYBEAN MACHINE 16

capable of executing machine code and performing a set of system services.

Concurrency is provided as the next level of functionality by the introduction of
primitive message handlers. Each processing node has the ability to send messages to any
other node, where a message is simply a physical address to start running on a foreign node,
followed by routine-specific data. Thus, a Jellybean primitive message is actually just a way
of changing a program counter of a remote node. A set of common operations can be placed
in identical physical memory locations on each node, so that an operation can be run on any
node by mailing that routine’s address to the node. The operating system provides a small
set of primitive message handlers to perform common operations which reside in the same
locations on each node. With this small set of locked-down routines, the machine gains thé
ability to compute concurrently, to use a global addressing abstraction over the physically
distributed memories, and to perform some amount of object migration and other control

of resources.

Two special primitive message handlers are special, in that other system services are
built on top of them. The CALL message handler provides a mechanism for starting code
contained in virtually-addressed relocatable objects, rather than just code that resides at
locked-down physical addresses. This provides a convenient way of packaging objects and
supporting remote procedure calls. The SEND message takes the code execution mechanism
to an even higher level, and provides for a dispatch-on-type calling model as used in object-

oriented systems like Flavors or Smalltalk.

The final two layers of the system are the interfaces for the programming models.
The Jellybean Machine under this highest level of abstraction appears to the user a system
to run high-level languages like Smalltalk.

The rest of this chapter will go into the abstractions in more detail, describing what
functionality each level of the machine provides. It may be helpful to refer back to figure

2.1 as you read the following sections.
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2.1 The Processing Node

Each node of the Jellybean multiprocessor (a Message-Driven Processor) is a tagged-
architecture microprocessor with a small on-chip memory with separate regijster sets for

operating at two priority levels.

2.1.1 Machine Code

The machine code interpreted by a Message-Driven Processor (MDP) is a simple 3 operand
instruction set (HT88]. Code is executed sequentially, and changes in control are provided
by simple conditional and unconditional branches. The instruction stream is accessed via
two registers, one that points at the base of the code block (A0), and one that indicates
the current offset into this block (IP).

2.1.2 System Calls

The processor also has a small fixed length stack, and a mechanism to make system calls.
This provides us with the ability to change contral to common subroutines, and easily restore
execution upon return. The addition of the system call machinery gives us the ability to
provide several extensions to the processor in terms of system services written in machine
code. Heap management, and an object-based memory allocation model are provided with

system calls, as are the mechanisms to address these objects with relocatable, virtual IDs.

2.1.3 Fault Handlers

Similar to system calls, the MDP also contains a fault handler table providing software
routines to run when iﬁatructions fault because of various exception conditions (tag mis-
matches, addressing past segment, integer overflow, translation buffer lookup miss, etc.).
When a fault occurs, the IP is pushed onto the stack, and the appropriate fault routipe

~
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(found in the exception vectors table) is run. An address of each fault handlers is placed
in the exception vector table by software initialization. The- addition of the fault handlers
gives us several advantages in our quest of an object-oriented concurrent processor. We can
use tag checking to support optimistic code generation and a type of “generic operation”
approach on the machine code level. The fault handlers also provide us the ability to effi-
ciently implement virtual ID lookup via the XLATE instruction. The fault handlers will be

described in more detail later when the entire system has been more thoroughly explained.

Since both the system calls and fault handlers are supported by a software initialized
vector table, the processor can be “reshaped” into a different type of machine by replacing
the ROM code that sets up this table. Only the instruction set is fixed, allowing the MDP
processing node to be used as a basis for various alternative concurrent processing system

paradigms.

2.1.4 The Basic Node of Computation

With what we have described so far, our processor is a sequential machine, able to be
executing in one of two priorities. It refers to its instruction stream using physical memory
base and offset registers. The addition of the system calls provides an interface to OS
services, such as those to allocate memory, generate virtual object IDs and to manage ob ject
ID to physical address translation. The fault handlers permit us to develop “optimistic”
code, where a normal, error-free execution will proceed rapidly, and we only piy the price of
software execution if an error condition occurs. The fault handlers are also used to support

a fast virtual namespace, where translation can be as fast as the XLATE instruction.

The sum is a flexible, object-based microprocessor that will serve as our basic node

of computation as we venture into the realm of concurrency.
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2.2 The Concurrent Processor Model

By providing mechanisms for node-to-node communication, our machine becomes a mul-
tiprocessor, called the Jellybean Machine. Many MDP processing nodes (as well as other
potential nodes such as floating point processors and memory nodes) are connected together
in a network. Communication between the nodes is provided by the MDP SEND instruction
which injects messages into the network. The messages are routed by routing hardware to

the message queues on the destination node.

Messages received by an MDP processing node consists of two parts, a message
header which contains the address of the primitive message handler to run, and a sequence
of message specific data words. The header of the message acts in effect like a process
descriptor for providing efficient message execution. When a message arrives at the specified
node, it lands in the destination node’s queue. The queue acts as a FIFO scheduler of
primitive message processes. When the message moves to the head of the queue, the MDP
executes the message by setting the instruction pointer register to point to the primitive

message handler whose address is in the header of the message.

Several useful system services are written as primitive message handlers. Examples
of primitive message handlers include those to make a new object on a node (NEW_MSG)
and to request a copy of a method from a node (METHOD REQUEST MSG).

With the addition of primitive messages, we have the ability to process concurrently,
and to support a distributed namespace. We can no& extend our virtual memory system
to support naming of objects, not just in the local memory, but on any node in the entire
network. With a distributed namespace, we gain flexibility of resources. We can migrate

objects as we need them to balaace load and to free up memory. .
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2.2.1 Methods and the CALL Message

Up to this point, we have only been able to run foreign code that resides at fixed physical
locations. We desire a more flexible mechanism for dealing with blocks of code, such as those
that will be output by compilers. Since we already have an object based storage model,
it would be very convenient to store code routines in objects and provide a mechanism for
their execution. We call code routines stored in virtually addressed, relocatable objects
methods to differentiate them from physical locked down code sequences. We provide a
mechanism to start these methods executing by writing a primitive message handler called
the CALL message handler. When a CALL.MSG starts executing on a node, it runs the
method indicated in the message argument. This allows us to have a flexible system of

remote procedure calls.

2.2.2 SENDing Selectors to Objects

The final operating system layer in our quest for an object-oriented execution model is
the SEND MSG message handler. A SEND_MSG consists of a selected generic operation,
represented by a unique symbol called a selector, followed by the object(s) that the selector
acts upon. If we wanted to send the DRAW selector to an object (say a triangle), we
would SEND a SEND.MSG message to the node the triangle object resides on, passing the
selector DRAW, and the virtual address of the triangle object receiving the selector (called
the receiver). When the SEND_MSG handler gets executed, it determines the appropriate
method to run, and then remotely calls the procedure by sending a CALL MSG message

to this method which then draws the triangle.

In order for this system to work it is necessary to maintain certain system tables
that map pairs of selectors and object classes with the virtual IDs of methods to perform
the desired information. It is also necessary to insure that semantically indentical selector

operations get the same selector symbol. In other words, all PLUS‘g_erationu must get the
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same symbol representing +. The exact mechanisms of the class/selector system will be

described in more detail in chapter 6.

2.3 High Level Language Model

For the final part of our tour of the Jellybean Machine, let us step back once more, and
view the machine from the perspective of the programming languages that will be used to

write user programs.

2.3.1 Intermediate Code

To provide a uniform target language for compilers, we have specified an intermediate
language called i-code. This language has a simple set of operations, and a simple manner of
referencing operands. By passing the send code through a code generator and a linker/loader
we can store actual MDP machine code on nodes. The i-code level of the system provides a
convenient entry point for various compilers that necessitates no knowledge of the underlying
layers. All interaction is via the protected subsystem of the i-code interface. This interface,
in effect, provides an abstract i-code machine that can be of use in many different machine
configurations. Implementations of this interface on different machine architectu.es would

provide a convenient way to reuse compilation tools and compare system performance.

2.3.2 User Languages

The user language model is what would be seen by the user of the Jellybean Machine. He/she
would be faced with the language interaction shell and would see none of the internal layers
that compose the system. The currently supported user language is a prefix notation form
of concurrent Smalltalk [DC]. Other languages, such as a Lisp with flavors should also be

possible.




Chapter 3

Memory Management and

Addressing System

Work without hope draws nectar in a sieve
And hope without an object cannot live

— SaAMUEL TaYLOoR COLERIDGE, in Work Without Hope

Oh call it by some better name
For friendship sounds too cold.

— THOMAS MOORE in Ballads and Songs: Oh Call It by Some Better Name

The Jellybean Machine, targeted for object-oriented applications, needs to have an
object-based storage model. This chapter sketches the machinery that interact to provide
this model. The mechanisms basically consist of two parts, (1) the services to allocate and
deallocate contiguous blocks of physical memory, and (2) the virtual addressing abstractions
that make objects the basic unit of storage. This virtual address allows object relocation
and provides a way to reference storage on foreign nodes. Virtual naming and physical

allocation systems combine to form an object based programming system.

22
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NEW
OBJECT
TRANSLATION GENERATE ALLOCATE
TABLE VIRTUAL PHYSICAL
ROUTINES ADDRESS MEMORY

Translation Virtual
Table iD Heap
(BRAT) Pool

Figure 3.1: Schematic Model of the Memory System

At the heart of the object based system is the NEW system call, which creates a
new object. This routine utilizes the 3 object system subsystems, the translation manager,
the name manager, and the memory manager. This interaction of the various systems is
shown in figure 3.1.
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3.1 “Freetop” Contiguous Heap Allocation

Each node of a Jellybean Machine has its own local memory that can be accessed very
rapidly. Part of this local memory is reserved as a heap to allocate blocks of memory from.
Heap allocation is done in a straightforward “freetop-next” manner. Memory is allocated
starting from the current top of free memory, and the freetop pointer is moved past the

block allocated. The ALLOC system call handles the allocation requests.

3.2 Compaction is Fast

Deletion of objects fragments the heap leaving unused “holes” in the heap. We reclaim this
storage by sweeping objects down toward the base of the heap, to fill up the blank space,
with the freetop following accordingly. Since each local memory is small and fast, and
each processor can sweep in parallel, compaction takes very little time. Figure 3.2 shows a

process of heap allocation, deletion, and compaction.

3.3 Physical Base/Length Addressing

Blocks of memory are described by physical base/length values supported by the processor’s
primitive ADDR data type. The base is the starting address of the block of memory, and the
length is used for access bounds checking. The format of an ADDR tagged value is shown
in figure 3.3. The tag of the physical address word is a unique number ADDR representing
a physical address value. The R bit is used to specify that an address value points to a
relocatable object. The I bit specifies that the address is now inya.lid. Both of these bits

are used for the implementation of virtual addressing.
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Empty Heap  Allocate Objects  Delete Objects Compact

Figure 3.2: “Freetop” Heap Allocation, Deletion, Compaction
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Figure 3.3: A Physical Address Word Format
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3.4 Virtual Addressing Extension

Having physical addresses only allows us to access objects on the current node. It provides
us no mechanism for naming objects on different nodes. For this reason and because it eases
relocation and provides an object-based storage model, we extend our addressing system
from the local, physical namespace provided by the physical ADDR' values to a global,

virtual namespace using virtual object IDs. A virtual ID is a global name for an object.

8.4.1 Creating New Objects

Objects are created by the NEW system call. The system call allocates memory with the
ALLOC call, reserving the first two words of the allocated block of memory for object header
information. Once the block of memory is allocated, a unique, virtual ID is generated with
the GENID system call. The first word of the block of memory is initialized to contain the
length and data type of the object, and the second word is set to the virtual ID. Finally,
a virtual ID to physical address binding is made for the object so we can find the physical
location given the ID. The format of an object is shown in figure 3.4.

To manage this virtual namespace efficiently, we need some operating system and
hardware support. First of all, the processor provides a matching ID register for each
physical address (A) register. These ID registers hold the virtual IDs for the objects whose
physical addresses are in the A registers. We also provide a translation buffer as we will
discuss shortly.

3.4.2 Virtual Memory System Calls

The GENID system call generates a new serial number, unique on the current node. The
current implementation encodes a virtual ID in two fields, a node-unique serial number, and

a node number component representing the node number an object was created on. The
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Object ID

Figure 3.4: The Structure of an Object

> N words of object data
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OBJECTS

Figure 3.5: A Virtual Address Word (ID) Format

format of this virtual ID is shown in figure 3.5. There are also several utility routines used
to manage the virtual — physical translation table (called the Birth/Residence Address
Table, or BRAT). These routines add, lookup, and remove bindings from the translation
table. They are implemented by the extended system calls BRAT_ENTER, BRAT XLATE,
and BRAT PURGE respectively. Finally, we provide the NEW system call to allocate and
install a new object. This service allocates physical memory, generates a virtual ID, installs
the virtual — physical binding in the BRAT, and returns both the ID and the address. The
NEW system call is to the virtual addressing model as ALLOC is to the physical addressing
model.

3.4.3 Translation Buffer

To speed up translation, each processing node has a 2-way set-associative translation buffer,
and the aczompa.nying ENTER, XLATE, and PURGE machire instructions. The XLATE
instruction will fault if no binding is found in the cache, and a software exception handler

will be run to resolve the name.

ey ke
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Virtual ID
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Figure 3.6: Format of the Transiation Buffer
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3.4.4 Automatic Retranslation

To support ma.:ﬁmnm efficiency in normal case situations, the processing node provides an
“invalid” bit in each address (A) register. If this bit is set, it signifies that the ID and A
register have values that are no longer consistant. Any access of an invalid A register will
cause a fault handler to be run which will retransiate the ID register into the A register
and continue. This way we can be “lazy” and retranslate invalid bindings only if needed.

3.5 Summary

Physical block allocation is used to reserve segments of memory. Virtual IDs are associ-
ated with these blocks of memory, and bindings are formed, to provide an “object-based”
allocation model. This object allocation model provides the following benefits

e An abstract memory model, where “objects” are the primitive metric of storgae rather
than physical addresses.

o A location independent memory model with indirection through a translation table,
allowing ease of relocation.

o The ability to represent the data types of objects.

o The introduction of a global namespace where we can refer to objects residing on any
node of the network.
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Chapter 4

Distributed System Support

I pity the man who can travel from Dan
to Beersheba and cry, 'Tis all barren!

— LAWRENCE STERNE, in A Sentimental Journey (1768)

In the previous chapter we developed a object based allocation model and a global
naming system. With this functionality, we gain much greater flexibility. We take this
system one step further in this chapter, as we describe a mechanism to migrate objects
from node to node. This added ability requires a few extensions to the virtual naming

model presented in the previous chapter.

4.1 The Idea

In the previous naming model, virtual IDs were bound to physical addresses. Since ob jects
were not allowed to migrate, they were forced to always reside on their birthnode. Now that
objects are allowed to emigrate to different nodes, we need to expand our name resolution
system. In addition to virtual — physical bindings we add a virtual — node-number

binding semantically representing a “hint” that the object in question now resides on a

31
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node #1 node #2

ID1-bnode 24
~

\

Figure 4.1: An Example of Hints

different node number. Figure 4.1 shows that node #1 has a hint that an object is on node
#2.

4.2 Chaining of Hints

These node number “hints” indicate another node to look on for the object in question. The
current implementation allows chaining of hints (although cycles will never form). If we ever
follow a pIth of hints and find no binding for the object ID, we then query the birthnode
which is required to have a path to the object in question. Figure 4.2 is a snapshot of a
system where a chain of hints has formed to an object. -

A question then arises as to how long to let these chains of hints be. Some distributed
systems, such as System R* [Lin80], only allow paths of length 1, i.e. one hint. If the
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object is not one hint tramsition away, the system then defaults“o the birthnode where
the location of the object is found, and the previous incorrect hint is updated. However,
in our system we choose to have multiple hints because objects may migrate quite a bit,
and this would increase the number of birthnode accesses. Performance could significantly
degrade if a popular object moved quite a bit (as we would expect popular objects to do).
If we notice in later performance experiements, that chains of hints become commonplace,
adding latency and unnecessary network traffic, we can adopt one of 2 solutions, (1) only
allow one hint or (2) collect and update old hints periodically.

4.3 Calculating Likely Nodes From Object IDs

The operating system provides a system call for finding a likely node that an object resides
on. This ID.TONODE call takes the virtual ID of the object and returns a node number.
It does so by the algorithm charted in figure 4.3. It works in the following way. The virtual
ID is looked up in the translation table. If it is not there, we have no idea where the ob ject
is, so we check the birthnode. If there is a binding, but the binding is to a hint (an integer
value), we return this hint as the probable residence node. Finally, if the binding is to a
physical address, the object is local, and the local node number is returned.

4.4 Virtual To Physical Translations In The Migrant Ob-
ject World

Now that objevts are allowed to wander aimlessly across the nodes of the Jellybean Machine,
virtual to physical address translations are necessarily slightly more sophisticated. Three
conditions can occur when we attempt to translate a virtual ID into a physical address.

1. We find a physical address value for the binding
2. We find a hint to where the object currently resides
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ID TO NODE

Pick a random node to
perform the primitive
dats operation on

XLATE ID locally (this
does an XLATE and a
BRAT lookup and
returns NIL if not found)

YES
NO
Check tag of result to

determine if object is

local or a hist
YRS YES
Return this INT value The object is local to this
as a hint to where the node, 20 return the local
T object might be node aumber

We have no ides where
the object is, s0 use
the birthnode

Figure 4.3: Flowchart for the ID.TO_NODE algorithm
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3. We find no binding for the object

Case 1 is the normal situation. The physical address associated with the object ID is
returned. Case 2 implies that the object is rumored to be on a foreign node. We then
send a request to this node asking that the object be shipped here for processing, and we
suspend our process onto a wait list. Case 3 occurs when a node has no idea where an
object resides. In this case, we send a request to the birthnode asking for the object. If the
birthnode doesn’t know where an object is, it loops, mailing messages to itself, assuming

the object is in a state of transition somewhere.

4.5 Bouncing Objects

Note that this method of finding data objects may cause them to bounce around from node
to node, as different processors wish to compute on them. This is the direct result of several
design decisions: (1) each processor executes only one task at a time, (2) memory is not
shared among processors, (3) mutable data objects are not cached, and (4) an object’s data
lies entirely on one node. The first and second decisions are fundamental to the design of
our machine. We chose the grain size and memory model to provided a moderately fine
grain, highly scalable processor. We chose not to do object caching because it is expensive
to do in software, and is difficult on a network based memory model. It may be possible to
provide coherent caching in the future however. The final restriction, that an object’s state
is contained on one node only is for simplicity’s sake, and can be at least partially lifted by

the introduction of “distributed objects” described in a later section.

So, with these characteristics in mind, it becomes important for us to try to prevent
unnecessary “pinging” of objects from node to node. One way this is done is by “sending
work to the object” rather than “sending the object to the work™. Unfortunately, this is

difficult to do in the general case due to problems with transferring processor state. As a
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compromise, we set the following policy.

1. If we were sending a selector to an object, and the object is not local, we forward the
selector to the location of the object!.

2. If we were accessinﬁ a non-local, immutable object, we halt, saving our process state,
request a copy of the object, and restart execution when the copy arrives.

3. If we were accessing a non-local, mutable ob ject, we halt, saving our process state,
move the object here, and restart when it arrives.

This policy reduces the severity of the “pinging” problem, because work tends to accumulate

at the object, while at the same time, allowing the object to move if it has to.

4.6 Details About Object Migration

This section formalizes the mechanisms provided to migrate objects. When we try to access
a non-local object, we mail away to request a copy of the object or to move the object
(depending on whether the ob ject is immutable or mutable, respectively)?. When we wish
to request a non-local object, the following steps are taken:

1. The processor state is saved in a context object, and the context is marked waiting
for the ID of the object being requested.

2. Tgle context is placed in a resource wait table that indicates processes waiting on
objects.

3. A MIGRATE.OBJECT message is sent to the best guess residence of the object,
asking it to be migrated to the requesting node, and the process suspends, able to
execute the next message in the queue.

4. This MIGRATE_.OBJECT message is forwarded down the chain of hints. If it lands on
a node with no binding for the ID in question, the search continues at the birthnode.
Finally this message arrives at the node the object resides on, and the message handler
is run.

5. If the object in question is marked unmovable, then the message is sent back to
the start of the queue, otherwise the message handler decides whether the object is
mutable or not, and acts depending.

e If it is mutable, the bindings are removed from this node, the object is mailed in
an IMMEIGRA'I‘E-OBJ EC'? message back to the requesting node, and the object
is deleted.

1The class/selector late-binding activation model is discussed in detail in chapter 6.
3Since a process cannot be interrupted by a same priority message, it does not suffer from livelock and

can always make headway:
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o If'the object is read-caly, the data is mailed in an IMMIGRATE_COPY message
back to the requesting node.

6. These messages eventually arrive back at the requesting node.

o When a IMMIGRATE_.OBJECT message arrives, the message handler (1) allo-
cates the object, (2) marks the object unmovable (until it can update the birthn-
ode, to prevent a race condition where hint updates may occur out of sequence),
(3) copies the data into the object, (4) mails a NOW IDING_AT message to
the previous node of residence, and (5) calls the RESOURCE_ARRIVED system
call, which will queue the restart of the waiting contexts.

o When a IMMIGRATE_COPY message arrives, the handler (1) allocates the ob-
jeet, (2) marks the object header as a copy, (3) binds the old ID to this new ob-
ject, (4) copies the data into the object, and (5) calls the RESOURCE.ARRIVED
system call, which will queune the restart of the waiting contexts (copies can be
collected when storage runs low).

7. The NOW_RESIDING.AT mes makes a hint from the current rode to the new
node, and mails a UPDATE.B NODE message to the birthnode of the object,
telling it of the object’s new location.

8. The UPDATE_BIRTHNODE message makes a hint to the new location and mails an
OBJECTMOVABLE message to the location of the new object, passing its ID.

9. The OBJECT .MOVABLE message marks the object movable. Now the object is free
to move again.

Figure 4.4 shows an example of this process.

4.7 Summary

The addition of a mechanism for object migration adds much more flexibility to the Jelly-
bean system. Without imposing policy, the migration and copying system provides the
basic mechanism for resource sharing. To alleviate name resolution bottlenecks at object
birthnode, I designed a system of cycle-free hints to indicate where objects carrently lie. It
is not clear how long to allow these chains of hints to be. Long chains of hints would cause
unnecessary network traffic and increase latency. Having single hints would increase the
number of birthnode accesses and require mechanisms for removing dld links. The system
currently supports chains of hints.
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Figure 4.4: Step-by-step Object Migration
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Chapter 5

A Virtually Addressed Code

Execution Model

They shall mount up with wings as eagles;
they shall run, and not be weary, and
they shall walk, and not faint

— The Holy Bible, Isaiah, 40:31

At the most primitive level, we could execute physically MMM blocks of machine
code by directly setting the registers, or by sending primitive messages. Unfortunately,
we have no mechanism to allocate or relocate these blocks of code, they are physically
addressed and sedentary. This chapter presents the system mechanisms that interact to
provide a ;mre flexible, but low overhead model for code execution by taking advantage of
the virtually-addressed, object-based storage model we developed in the last 2 chapters.

I will present (1) the advantages of an object-based code model, (2) the mechanisms
for executing object-based code, (3) local caching of methods, (4) contexts, suspension,
and waiting for resources, and (5) efficient ways of distributing code models across a large

network.
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Figure 5.1: Format of the CALL Message

5.1 Taking Advantage of Object Storage

By taking advantage of the object storage and naming system we developed, we are able
to wrap threads of code inside objects aad gain all of the bensfits of this mere powerful
object-based abstraction, of which a few are: (1) dynamic allocation, (2) relocatien, even
across nodes, and (3) convenient aaming and name resolution. This view of code blocks as
objects (or methods, which is what we call code blocks that are wrapped in objects) allows
us to consider more advanced calling models, such as the ability to conveniently support
remote procedure calls (RPCs) and the flexibility to “send the work to the data” rather
than just the typical mechanism of “briaging the data to the work”.

5.2 An Overview of the CALL Message

Ignoring for the moment the question of initially creating methods, ist's concentrate on the
mechanisms needed to execute them. The operating system provides a primitive message
handler for a CALL message. To start 3 method running, we mail & CALL message to the

node the method resides on!, passing as arguments the virtual ID of ths methed to axesute,

TSince we build this oa top of the virtual, distributed namespace model, we cop yae hinte t0 mpke onr
best guess where method resides.
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and any data the method expects as parameters. The format of the CALL mesage is shown
in figure 5.1. When the CALL message arrives at the node it first checks if the method is
here. If so, the code is started. If not, rather than forward the message to the birthnode,

we note that

1. Methods are immutable, and therefore can be copied
2. Certain methods might tend to be called often from many nodes

and adopt a policy of copying the method to this node. This way we provide local copies
on many nodes (these can be periodically purged by some appropriate stategy to free up

memory).

Once the method is on the node where the CALL message arrived, the message can
start up the method. It does that by

o Translating the ID of the method into its physical address

o Placing this physical address of the code block in A0?
o Placing a 2 in the IP register

These steps will start the processor executing instructions from the method, starting at the
third word. We skip the first two words of the method, because these hold object header
information. The steps of the CALL message are schematically charted in figure 5.2. I
the method somehow relocates on us while we were executing?, the process yha.t relocated
the object will invalidate the AO register. When our process starts again, it will fetch
an instruction through A0 and cause an invalid address fault. This will run an exception
handler to retranslate the method ID (in IDO) into the physical 2ddress (putting it in A0
again), mi we will continue as if nothing had happened.

e e e Tt e e T b b the rlaivs ofes ol

the am couater within this code block starting at AQ. (If we are in abeolute mode, the IP register acts
in effect like an absolute addréws rather than a relative address, becanse absolute mode makes the processor

pretend the value of AO is 0.)
3This could be caused by heap compaction, or the method being migrated to amother node to free up

space, among other reasons
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5.3 Caching Method Copies

Since method code is immutable, we can cache methods, just as we can cache other read-only
data. To request a copy of a method we:

1. Allocate a context object to hold our processor state, so we can restart later
2. Copy the processor state into the context

3. Place the context in the resource wait table indicating that our context is waiting on
this requested method

4. Mail off, requesting a copy of the method
5. When the method arrives, it is placed on our node and our context is restarted

These cached copies will have the copy bit set in the object header so that the storage
reclaimer will know that this cached object is a duplicate, and can be purged if space is
tight. Let’s now look in a bit more detail at contexts and this resource wait table, two

crucial mechanisms for supporting high level execution control.

5.4 Contexts

5.4.1 Why Do We Need Them?

Contexts are just objects that hold the important state of the processor, so the current task
cab be halted and later restarted where it left off. In addition, contexts can provide space

for local variables used in the task’s computation.

5.4.2 How Do We Make Them?

Contexts are allocated by the NEW_CONTEXT system call. The call takes as an argument,
the number of additional variables needed, and it returns a context big enough to hold the

minimum necessary processor state plus the additional variables. When a process is done
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with a context, it should explicitly deallocate it with the FREE_CONTEXT system call.
Figure 5.3 shows the format of a typical context.

As with all objects, the first two words are used by the object manager. The next
three words are used to hold an offset to the processor state part of the context (for faster
restarts), a pointer to the next context in a list of contexts, and a value indicating that the
context is waiting on a particular resource. The context then contains some amount of user
reserved space follwed by nine words of processor state. The minimal size of a context, with

no user space is 14 words.

5.4.3 How Do We Make Them ... Quickly!?

Since we expect contexts to be used very often, and since we want method startup costs to
be small and methods to be short, we don’t want a majority of our execution time to be
spent allocating contexts. To accomodate these constraints, we reuse old contexts rather
than allocating new ones each time. When a context is deallocated, it is placed back on a
free contezt list. The next time a context is requested, we try to re-use one from the free

list, since this will take only a few instructions.

However, contexts vary in size, and we wouldn’t want to have to walk the list each
time to see if we have a context big enough to meet our request. So, we only save contexts
that meet a common size. This way, any time we request a context of this “common” size,
we can yank the first one off of the free list and use it. The format of the free context list
is shown in_figure 5.4.

The first context in the free context list is pointed to by the CONTEXT FREE.-
LIST operating system variable. If no contexts are in the free list, the OS variable is set
to NIL. Each context in the free list points to the next context in the list by the context’s
NEXT.CONTEXT slot as shown previously in figure 5.3. The final context in the free list
has its NEXT_.CONTEXT slot set to NIL.

v
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Figure 5.4: The Free Context List
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5.4.4 Restarting a Context

The operating system provides one primitive message (RESTART .CONTEXT) and two
system calls (XFERID and XFER.ADDR) to restart a context. The system calls take
either an ID or a physical address of a context, and restarts it, copying the processor state
from the context to the processor registers. The restart context message takes a context [D

and transfers control to it by calling the XFER_ID system call on the context ID.

5.5 The Resource Wait Table

The resource wait table is a system data structure that indicates which contexts are waiting
for which services. It consists of two parts. The first part of the wait table is a fixed size
associative table that binds resource IDs to waiting contexts. Figure 5.5 shows a portion of
a hypothetical table. We see several contexts waiting for ID1, one context waiting for ID2,
and the rest of the slots are empty. Empty slots are set to NIL. When a resource arrives,

the wait table is searched, and the contexts in the list bound to the ID are restarted.

Searching this table is fast, but unfortunately, we can not bound the number of
entries that try to occupy the table. At some time, we may run out of room. When this
happens, we resort to a slower form of data structure and link the contexts waiting on
resources in a list called the resource overflow list. If we don’t find a binding in the table,
we begin searching the list of contexts. Since each context has a RESOURCE.NEEDED
slot, we can always tell what resource the context is waiting for. This provides us a way to
continue if the table becomes full. By sizing the table appropriately, it may be possible to

limit use of the overflow list to a minimum.
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Operating System Variables
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Figure 5.7: A Parallel Resource Request Bottleneck in a 3 x 3 Network

5.6 Removing Method Caching Bettlenecks with Distribu-
tion Trees

The current scheme for method caching implies that in many cases, nodes wanting methods
will have t; ask the birthnode of the method (or at least the residence node) for a copy.
If many nodes simultaneously need the same method (as will likely happea with highly
parallel execution), then the birthnode will be deluged with method requests which it can
only handle sequentially. These bottlenecks could degrade performance considerably. For
example, figure 5.7 shows a network of 9 processing nodes. Suppose nodes 2 - 9 all requested
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a method copy from node 1. Node 1 would receive a barrage of 8 requests for the method

which would eliminate all parallelism, since it could consider each request only sequentially.

One way to reduce the threat of performance degrading bottlenecks is to set up a
distribution hierarchy, so that each node requests resources from its local distribution center
(the distribution hierarchies are different for different resources). Each of these local centers
would make requests to its superior, all the way up to the master resource center. We can
use this type of distribution graph to help in requesting method copies (or copies of any

type of immutable data for that matter).

Take again the 3 x 3 node network example, where 8 nodes request a method from
node 1, but this time impose a distribution bureaucracy like that shown in the tree in figure
5.8. This time, node 1 only has to handle 3 messages, from nodes 2, 4 and 5. Each of these
nodes serve as local distribution centers for the remaining nodes. Node 2 services nodes 3
and 6, node 4 services nodes 7 and 8, and node 5 services node 9. In this manner we have
permitted more parallelism to continue, as well as limiting the burden on node 1 (which
could cause queue overflow, network blocking, and other conditions where performance

degrades considerably).

Let’s now discuss some ways that a distribution tree method caching scheme can be
implemented in the Jellybean Machine system software. First, what are the contraints we
are working under?

o The distribution tree edges must be easily computable

o We need to make reasonable choices for branching factor versus tree depth. Too high a
branching factor might create bottlenecks, but too low a branching factor would tend
to cache unnecessary copies, and suffer long latency as the birthnode was many edges
away from the requesting node.

o We would like to have significantly different trees for different resources. Different
methods should have different distribution hierarchies, again to decrease bottlenecks,
and to distribute resources more thoroughly.

One fairly simple first attempt at a distribution tree formula might be to go to the

distribution center that is halfway between the current node and the birthnode in terms
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Figure 5.8: A Distribution Tree Bureaucracy To Balance Load in a 3 x 3 Network
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of hops. In other words, to find the next regional distribution center, given the birthnode
coordinates (z;,3) and our current coordinates at (z.,y.), we would calculate the halfway

coordinates (z* , y;) by:

Ty —~ 2T
A‘n‘l = —E——C'
Az =

{ [2reall if 58nZpeq) 2 0
= [lzrealll if sgnZreq) < 0
Ay = { [reall  if $60Ycea) 2 0

= [¥realll if sgn¥gea) <0
7y = [z + Az]

= [re+ay]

This is in fact the algorithm used to create the distribution tree in figure 5.8. Figure 5.9
shows several distribution trees created by this algorithm for networks of various sizes and
various birthnodes. This method creates trees with depth at most log; m + 1 for a network
with a maximum dimension of m nodes. So, for a reasonable sized machine of 4096 nodes
(64 x 64) we would at most have to traverse log; 64 + 1 or 7 edges of the distribution tree.
For enormous systems, say 1K nodes on a side, the tree depth will be only 11.
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Chapter 6

System Support of a
Type-Dispatched Calling Model

We never sent a messenger save with
language of his folk, that he
might make the message clear for them

— The Koran, 18:11

One of the most important aims of the Jellybean Machine is to provide a concurrent
processor that efficiently supports object-oriented, late-biﬁding procedure activations. This
chapter introduces the idea of message-passing and late-binding programming methodolo-
gies, and discusses the system services in the Jellybean Machine operating system that

support this maaner of programming.
6.1 Message-Passing and Object-Oriented Languages

There has been much interest during the past few years in “object-oriented” programming.

Though this term is not particularly precise, it does describe a fairly cohesive set of languages

56
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exhibiting behavior markedly different from the typical Algol-like programming style. There
are two characteristics in particular that languages typically categorized as object-oriented
share.

First of all, operations tend not to be thought of as functions applied to data objects,
as they are in Algol derivatives. Instead, data objects are “persomified” as “actors” that

receive requests made of them. These requests are made by “sending a message” to an

object called the receiver of the message. The operation that was requested of the object
is typically called the selector, since it selects the object to be performed. So, where a
standard language Algol-like language might calculate the determinant of a matrix m by

determinant(m);

and object oriented implementation might look something like

(send m ’determinant)

We call this concept of performing operations by sending selectors to objects the message-

passing paradigm. This paradigm turns out to be a very convenient model of computation.

The second characteristic of ob ject-oriented languages that make them appealing is
the fact that the operations on different data-types can have the same names. This »llows
us, for example, to have an ’area selector for circle data types, as well as an 'area selector for
polygon data types. In many other languages this would cause a naming conflict, requiring
us to set up an explicit naming convention, such as calling circle.area() and polygon.area()
routines on objects of the proper type.

But, muce importantly than just saving us the hassle of naming conflicts, object-
oriented languages actually decide which procedure to run for a certain data type. In other
words, when an 'area selector arrived at an object, the system would docide whether this
object is a circle or a polygon and automatically run the correct procedure. In addition,

if the receiver of the 'area selector was not a data type that supported the area operation
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(such as an integer), then an error would be reported by the system. In Algol-like languages,
it is the burden of the programmer to know the type of the object he is dealing with, so he
can call the proper operation. This is crucial in many symbolic languages with loose type-
checking, like Lisp, where we can have lists of many different types of objects!. This is called
a late-binding activation since we don’t decide what routine will be run at compile-time,

but instead wait until later, when the message send is actually done.

Operations with the same name and semantically similar meaning supported by
various data types are called generic operations since these operations represent the generic
behavior the programmer wants to accomplish (add things, draw things, calculate areas of
things). The specific behavior is calculated at run-time once we know the data type of the
object (called the class of the object), and the selected operation, by a process known as
class-selector lookup.

So, ob ject-oriented languages have two main components

1. Procedures are activated by the message-passing paradigm rather than a more ap-
plicative model of programming.

2. Each data type has its own set of supported operations, where names can be the same
as in other data types, and may represent generic operations over varied data types.
Activations are caused by late-binding sends which lookup the specific operation to run
based on the class of the object receiving the message (the receiver) and the selected
operation (the selector).

Our goal now is to provide a system substrate that will efficiently and conveniently support

these aims.
'Ard%dtﬁnhnobﬁetomnd&a:i'&m where we have a list of maay different
b) ia th ¢ pi . A ) to refresh the screen ia an object-oriented
:ﬁ":n i: t’o“:ld s '.tf:a‘: n.dc:;tmtom“:bjoc?i‘i the Iuthuod on the data type of each object at
rua-time, the appropriate routine (circle draw, rectangle draw, text draw, etc.) is activated
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Figure 6.1: Format of the SEND Message

6.2 Late-Binding Send Execution Support

The next task of the operating system is to provide a mechanism to simulate the message-

passing paradigm. We already have network communication hardware that allows dats to .

be sent between nodes. We also have a global object namespace provided by the virtual
memory extensions. Together, we can use these components to implement the message-

passing execution model.

To do this, we implement one more primitive message, the SEND message handler
(not to be confused with the SEND machine instruction). This primitive message handler
acts in the object-oriented manner we showed earlier. Figure 6.1 shows the significance of
the different words of the m&ago. The first word is the address of the SENL message
handler, the second word is the selector, the third word is the receiver. The rest of the

words are arguments, and information about where to reply to.

When the SEND message arrives on the node that the receiver resides on (we for-
ward this SEND message to wherever the receiver resides) the primitive message handler is
started. Figure 6.2 shows a flow chart that describes how the SEND message handler works.
It first picks the class our of the receiver object (so we know what data type the receiver is).
We then merge the class and selector together into a class/selector word (shown in figure

6.3). Now that we have the class and selector, we try to see if there is a class/selector —

~
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method ID binding in the cache. If so, we start the method with the CALL message as
discussed in the previous chapter. If not, we need to lookup the binding.

At the current time, we do not have enough insight into the characteristics of ma-
chine behavior, to feel comfortable locking down the class/selector lookup algorithm. For
this reason, we provide the lookup routine in a method. We insist that this method is allo-
cated before any others so it always has the same method ID. This LookupMethod method
takes the class and selector, and consults some distributed system table to find the method
ID corresponding to this class and selector.

6.3 Loading Class/Selector Methods into the System

Let’s now briefly look at how the class/selector method information is loaded into the Jelly-
bean system. Figure 6.4 shows the schema for how the compiler and run-time environment
will interact with the Jellybean Machine processing network. The compiler is responsible
for generating class and selector numbers and for compiling the source language into MDP
machine code. A certain node of the network is picked for the method to reside on by some
distribution policy. The method data as well as the class and selector that this method
represents are sent to this chosen node by the NEW_METHOD message. The format of a
NEW.METHOD message is shown in figure 6.5.

When a NEW_METHOD message arrives at a node, the NEW.METHOD message
handler begins executing. It makes an object to hold the method, and copies the code from
the message into the object. The NEW.METHOD bandler then calls the InstallMethod
method which takes the class, selector, and method ID and makes the bindings in the

class/selector — method ID data structures.

Specification of the class/selector — method ID data structures has been ignored

without attempts at subtlety. We do not have enough insight to definitely specify the best
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Figure 6.2: Flowchart of the SEND Message Handler
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Figure 6.3: Class/Selector Word Format
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Figure 6.4: A Coarse View of the Compiler/Machine Interface
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Figure 6.5: Format of the NEW METHOD Message
format for these tables. We can talk a bit about the issues involved. (1) We should be
able to take a class/selector word and efficiently find the corresponding method ID. (2) The
table should be distributed around the aetwork in a way to minimize bottienecks.

A reasonable way of doing this would bLe to apply some “bit-twiddling” function
to the class/selector words to decide what node is responsible for knowing their bindings.
The actual data structures could be hashed, or perhaps each class would have an object
that holds the method IDs for every selector. One annoying problem with any approach
is the boot-strapping problem. We need to know how we can get to the data. Because of
the added indirection through the LookupMethod and InstallMethod handlers we have the
flexibility to try several approaches and test their performance in the future.

6.4 Returning Values

Return values can be sent with the REPLY message. This message takes the context ID
to reply to, the slot number of the context to fill, and one word of reply data. The reply
data is passed by value if it is a primitive data word, or by reference if an object is to be
returned.
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6.5 Summary

The class/selector calling model is a convenient mechanism for invoking tasks. By imple-
menting it efficiently in the operating system kernel, we can guarantee an efficient implemen-
tation. To provided extensibility, we provide hooks to the LookupMethod and InsertMethod

handlers, so these routines can be reconfigured independently of the rest of the kernel.




Chapter 7

Storage Reclamation in the

Jellybean Machine

But virtue, as it never will be moved,

Though lewdness court it in a shape of heaven,
So lust, though to a radiant angel linked,

Will sate itself in a celestial bed,

And prey on garbage

— SHAKESPEARE, in Hamlet I, V. 53

7.1 Introduction

The successful performance of our machine relies on the fact that sufficient parallelism
exists on the grain of methods. In order for this to happen, it is important that data-
dependencies to shared objects are minimiz'éd, by adopting a more functional approach,
where methods interact by value rather than by reference, as much as possible. This situa-
tion promotes a large number of small, short-lived objects. Because of the minute amount

of memory per each processing node, an efficient storage reclamation mechanism becomes
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an important facet. The characteristics of our system, however, cause many straightfor-
ward methods of storage management to break down. In this discussion we will examine
some of the important properties of the Jellybean Machine, and the ways these properties
influence reclamation. The rest of this chapter provides a discussion of the issues pertaining
to reclamation on the Jellybean Machine, and a possible first-cut at a garbage collection
algorithm.

7.2 Automatic Collection is Desirable

Because the system is object oriented, and because we have a small memory with frequent
allocations, object reclamation is important. Because objects can be shared in complex
ways, and because of the high level programming model we wish to support, we wish most
object deallocations to be handled automatically by a “garbage collector” that searches for
objects that are no longer in use (i.e. there are no pointers to the object anywhere) and

deallocates them when necessary.

7.3 Choosing a Collection Approach

Several characteristics of the Jellybean Machine will guide us in the choice of garbage

collection. Let’s remind ourselves of the character of the machine.

7.3.1 Memory Organization

The memory 1n a Jellybean processor is small, and it is local to that processor. Memory
allocation is done in a simple contiguous manner. Compaction can be dome in parallel
very quickly. Memory objects are segment-based and are given unique object id’s. In

addition, these object id’s are concatenated with a birth node number to provide a global
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virtual address. The virtual to physical translation mechanism uses caching to improve
name resolution, but this relies on locality. Random access to many addresses could be

very expensive.

7.3.2 Addressing System and Network Topology

The Jellybean Machine uses a distributed memory to provide “site autonomy” [LS80] in
order to perform local operations very fast, and avoid memory conflicts. But, the tradeoff is
that foreign accesses will be very costly, involving a message send mechanism that is at least
an order of magnitude slower. In addition, distributed memory can require synchronization,
and the delays of network communication may make certain synchronization conditions
impossible. The network may cause bottlenecks to occur if too many messages are sent to

one place, and may hold data in transit. The network latency may also be a factor.

7.3.3 Garbage Collection Character

Garbage collectors take on various different characters. The common approach of reference
counting collection doesn't appear to be feasable in the Jellybean Machine because (1)
it cannot collect cyclic data structures, (2) every pointer change will require a (possibly
remote) object access, and (3) we are not always aware when “dead” pointers get changed.
For these reasons, we decided to attempt some variant of a pointer chasing garbage collection
mechanism. The next section describes the implementation of a pointer chasing garbage

collector for our machine in some detail.

7.4 A Pointer Chasing Garbage Collector

There are several properties that we would like our garbage collector to have.

B e T
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o The collector should be efficieat in texms of time and message sends. We do not want
the queues of all nodes to overflow with collection messagns.

o The collector should run in the background or incremensally, for two reasons. First,
we wish to take advantage of processor idle time so that we can squeeze as much
computation out of our processor as possible. Secondly, we would like to avoid the
situation where our machine runs for a while and then “hangs up” for an hour while
garbage collection occurs.

7.4.1 The General Idea

Most of the work of pointer chasing garbage collection algorithms to date are targeted at
sequential or shared-memory machines with large virtual memories. The standard algo-
rithm is based on the copying collector proposed by Baker. This has been expanded into
incremental collectors and has been tuned to various object lifespans, with a good degree
of success. Still, these approaches are targeted at a genre of machine of a radically differ-
ent character that the J-Machine. With an admitted scarcity of knowledge in distributed
collection, the rest of this chapter serves only to sketch a simple vision of such a collector

[Tot88], and some of the problems that are faced.

A simple collector would involve recursive marking by message sends, and would
compact the heap rather than by scavenging or copying, due to the small amount of memary
per chip. The phases of this simple collector would be:

Desire The desire phase occurs when some node or nodes has a desire to garbage collect.
Perhaps a node or a certain aumber of nodes have run out of memory. Perhaps this
occurs on a time count.

Init The initialization phase is where objects are marked unreferenced initially, as well as
setting any necessary variables.
Marking The marking phase does a recursive descent of the reference tree starting at the root
set, marking reachabje objects with the reachable tag.

Sweeping When marki-g is done, the memory can be compacted by “swveping” the good objects
back toward the bottom of the heap, and changing their virtual — physical bindings.
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7.4.2 Problems
Synchronization and “Travelling References”

A major problem in garbage collection across a communication medium is lack of synchro-
nized, instantaneous transmission. This shows itself in garbage coilection in a few ways.
One of the more annoying problems is how to be sure that the last pointer to an object
isn't in transit when the garbage collector comes along. The garbage collector doesn’t see
any pointers in the network, so an object may be deleted because a pointer was “travelling”
between nodes where it can’t be noticed. We can refer to this as the travelling reference
problem. Figure 7.1 shows a portion of a network of processors, where an ID of an object

is in the network when the collector is run.

An obvious way to resolve this situation is to prevent all upcoming message sends
during collection, so that no other pointers are mailed into the network, and then to wait
until all messages in transit have landed in a quene. We can tell when all messages have
landed by either waiting a length of time we know to be longer than the maximum latency
from the most distant nodes, or by sending “scout” or “bulldozer” messages down the
network dimensions. When all these “bulldozer” messages arrive, they will have pushed all

other messages out of the way, and the network will be empty.

Problems With Disabling Sends

In order to prevent the travelling reference problem, we have to

e Disable sends so no new references enter the network.
e Wait for all messages in the message in the network to land.

But, we have no explicit mechanism in the MDP processing node to disable sends'. If we

did, we could allow the processors to run until they tried to execute one of these disabled

10Ot more preferably - a mechsnism that would disable any sends that would cause a reference to be
mailed into the network - all other messages could continue
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Figure 7.1: Object ID Travelling in Network
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instructions. When this happened, a fault could occur and some maaner of process halting

could occur (such as saving a context for the process for later re-starting?).

A possible way to resalve this problem at first might be to place guards in certain
high-level execution handlers such as SEND and CALL. These handlers are run when a
SEND or CALL message (two messages that ask a node to start executing a method)
arrives. Inside these handlers we could have a guard that would defer the execution of
the method until collection finishes. This goes a long way toward resolving the problem of
travelling references if most the code that mails IDs around is code that is executed with
CALL and SEND?

Another way to shut down the machine might be to disable the queue execution.
This would cause messages to back-up in the queues. Certain messages that we would want
to execute could be done by having the processor “walking” the queue by hand looking for
certain types of messages (such as garbage collection messages). It could also pull items

out of the queue and into the heap to prevent queue overflow.

Problems With Background Execution

Since, at the start of garbage collection, we stop message sends by various possible mech-
anisms, our concurrent machine is effectively shut down. This violates our desire for the
collector to run in the background, in parallel with method execution.

3Thi howevet, lead to the difficult to blem of iasufficient memory for a context alloca-
tiol.“r%su‘;ﬂt u'mwc.ncinth mm:!g;lolemo: Whu?::n.i- not enough local memory,
the st mechanism is to do the allocation onaﬁongﬁi:ode. But this requires mailing ref

erences in the
network, which is exactly what we are trying to avoid. undezscores the difficulty present ia providing

efficient, convenient methods of preveat travelling references

3Aad this is likely to be tree. Apart from CALL sad SEND messages, all other messages are primitive
system messages (where the system have to be responsible foc avoidiag ID mailing duriag collection),
and vagious other messages to create NEW objects aad haadle fanction returas. 1f we think of a CALL
ot a SEND as being a function call, thea this guard method will mt.nll{ m.r the machine, with every
ptocessor being idle or waiting to execute a function. This implementation has least 2 requirements that
we must always be aware of. (1) We must insure that all non-CALL and non-SEND messages must not

violate the rules and mail references during garbage collection time. (2) Catastrophe can occur when we run
out of memory trying to make contexts to hold the deferred execution requests.

i . W
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In addition, the lack of a register set for background mode prevents any way for the
Message Driven Processor to take advantage of idle time in a reasonable way. Since any
message would take priority over background mode, the register set will be trashed. Any
computation done in background mode must shut off interrupts, which instead of taking
advantage of idle time, takes advantage of application execution time! Some compromises
can be made, such as having background mode start up small units of computation by send-
ing priority 0 messages, or by queuing up contexts of waiting-to-run background processes
that are begun by a context startup message send when the background loop is entered.

Again, various improvements should be examined.

7.5 Summary

The characteristics of the Jellybean machine necessitate a heap collector to reclaim storage.
This collector may have to run often (since cur nodes have such a small amount of memory).
A reference counting approach seems to be out since there is a large overhead in changing
the object reference counts (and it is difficult to know when a reference is written over
and thus deleted) as well as the fact that it cannot handle cyclic structures (if we insist
that cyclic structures are illegal that results in a big loss in terms of Rexibility. If we don't
collect structures, we will rapidly run out of memory). A pointer chasing collector has
problems with travelling references (where the marker will not see the final reference to
an object because it is in a network - and thus delete the object), but seems to be the
most viable approach. It would be desirable to have the cellector run in the background
without shut*‘ug the machine down, but the travelling refarence problem seems to make
this difficult.




Chapter 8

Support for Concurrent

Programming Languages

I get by with a little help from my friends.

— JouN LENNON AND PAUL MCCARTNEY, in “A Little Help From My Friends” {1967)

The Jellybean Machine Operating System Software provides several noteworthy
services to support concurrent programming languages, both for functional and efficiency
reasons. These include (1) the SEND.md REPLY message handlers, (2) futures, (3) dis-
tributed objects, and (4) the interaction interface.

8.1 High-Level Languages

8.11 CST

Currently, the high-level language being used in the Jellybean Machine project is a Smalitalk-
80 based language called CST (Concurrent SmallTalk) (DC]. CST uses a Lisp-like pre-
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fix syntax, and codes sends implicitly in a function applicatign metaphor. CST allows
asynchronous messages to exploit concurrency, and fully utilizes the late-binding execution
model. Locks are provided for explicit synchronization, and a “distributed object” data
type exists to scatter object state.oves a large area. This CST code will be compiled to
intermediate code which will is passed through a back end that converts the i-code to MDP,
machine code and loads it into the system. The compilation and loading mechanism is was
previously sketched in figure 6.4.

The rest of this chapter describes.sevaral operating system services that support the
execution of the object-oriented model of computation.

8.2 SEND and REPLY

As discussed in earlier chapters, the SEND message handler provides the machinery to run
a method based on the class of a receiving object and the selector symbol “sent” to the
object. In the current system, the SEND message may also describe one object to return a
value to. This return-slot is specified by passing the ID of the object to hold the returned
value (the returned value must be one word, either a primitive value such as an integer or
a symbol, or the ID pointer to the object), the slot (index into the object) number. and the
node the object is on.

The REPLY handler actually performs the return of the value. The REPLY message
mails the target object ID, the target variable number, and the one word return value to the
node number specified in the SEND message. When a REPLY message arrives at a node,
the returned *-lue is stored in the indicated slot of the target object, and any processes
waiting for a variable to be filled by a reply are restarted.
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8.3 Futures

8.3.1 Conforming to Data Dependencies

Data dependencies impose an order on execution. If a computation _result is used in a
calculation, the result must be available before the calculation can occur. In a sequential
processor, there is no problem. The instructions are ordered in such a way to insure that
previous results are available in certain places before those values are needed. In a dis-
tributed processor, on the other hand, a computation may take an indeterminate amount
of time to complete on a remote node. Because of this, we may get to a point where a value
is needed before the calculation of the value has completed. It is necessary to wait until

this result returns before continuing the calculation.

8.3.2 The Check’s in the Mail

This section details a mechanism used prominently by the Jellybean Machine to impose data
dependency orderings conveniently. The mechanism is quite simple. Whenever a calculation
is spawned off in parallel, the destination location where the value of the calculation is to
be stored is filled with a specially tagged value, called a contezt future, indicating that the
value will arrive to the context in the future. When the calculation replies with the value,

the future is overwritten with the real value of the computation.

When an access is made to a location in a context, using the value located there,
there is the possibility that the value hasn't replied yet. We can tell if the value hasn’t
returned yet, because it will be filled with a contezt future (c-future) if it hasn’t. Any read
of a location containing a c-future will cause the processor to fault, (1) saving the processor
state in the context object and (2) marking the context as waiting for a c-future. When a
reply arrives to a context, the context is checked to see if it is waiting on a c-future. If so,

it is queued to be restarted.
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Advantages Disadvantages
Simple Large Inertia
Transparent Parallelism Wasted
Minimal Synchronization | False Restarts

Table 8.1: Pros and Cons of Dependency Enforcement by Futures

Let’s examine this context-future mechanism in a bit more detail to see what it
really provides us and what deficiencies it faces. Table 8.1 itemizes some of the advantages

and disadvantages of the future mechanism.

8.3.3 Advantages

As we said earlier, the most desirable characteristics of the c-future approach is that it is
simple to implement and understand. It fits well into the existing system, being “opti-
mistic” — taking advantage of the fault mechanism and the tagged architecture and using

contexts.

Being transparent to the programmer/compiler writer is desirable as well. No
burden is placed on the code generator to explicitly keep track of non-completed tasks.
No extra instructions need to be placed in-line to check for the presence of values, or to

manipulate semaphores.
Finauy, the future approach only pays the price of synchronisation if it is neces-
sary. If a value returns before it is needed, or if an arm of a conditional is never executed,

we will not need to pay the synchronization price!.

!Though we do require all replies to be in before we deallocate a context, so we can re-use context IDs.
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8.3.4 Disadvantages

On the other hand there are several disadvantages to this approach. The system is sub ject
to high inertia. The total cost of halting and saving a context and restarting it when
the return value arrives is relatively high. The worst case occurs when we have many
dependencies following one after another. Here, we would keep halting and restarting,
making very little progress. It can be difficult to gain any momentum, because of the time
spent saving and restarting contexts. This case isn't quite so bad if we have other tasks
queued up that can take advantage of the free time, and if the replies take a while to
arrive (which is likely to be the normal case). The real question is one of balance between

computation time and system overhead time.

By controlling execution on the grain size of methods, whenever a sequential exe-
cution encounters a c-future value, the entire method will be suspended. Thus once we hit
a c-future value, other possibly executable code in the method is not run. This is directly
the result of basing the grain of parallelism on the unit of methods, and it has the effect or

wasting parallelism as opposed to a more fine-grain execution model.

C-futures also can lead to a problem of false restarts where a reply for a different
slot would restart the context, which would immediately halt on the same c-future again.
If we were waiting on variable A to return and a reply to fill variable B arrives, the context
would be restarted falsely, and when we read A we will hit the same future and halt again.
This is rectified in the prototype implementation, by using the RESOURCE_NEEDED slot
of the context to hold the slot number the context need to be filled. When a REPLY arrives,

the context is only restarted if it was waiting on the slot the REPLY came to fill.
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8.4 Distributed Objects

A final system characteristic designed to support efficient high-level language execution is
the introduction of distributed objects. A distributed object is one where its state is broken
up into segments called constituent objects, and scatterred across the processing network.

Its purpose is to allow parallel access to different parts of an object.

A single object can only be directly accessed by the node it resides on, and the aode
it resides on can only run one task, implying that an object can only be computed on by
one task at a time. In the absence of coherent caching strategies, this one-object—one-task

constraint can potentially severely limit parallelism.

By distributing parts of the object over several nodes we can provide some extra
(albeit limited) concurrency. The hope is that this increase of concurrency along with the
fact that an object-oriented programming model should provide access to many distinet
objects being computed on at once will prevent object bottlenecks from becoming a serious

performance hindrance.

The system supports distributed objects by providing (1) allocation and (2) con-
stituent lookup services. When a distributed object is allocated, the system creates con-
stituent objects and scatters them in a reasonable way around the network. Each :cnstituent
object has a normal object ID number which is unique for each CO, and a distributed ID or
DID which is the same for all constituents of a distributed object. This DID contains the

information necessary to locate any constituent object.

8.4.1 A Listributed ID Format

Figure 8.1 shows a possible format for a distributed ID. The DID knows the number of
constituent objects, the hometown node of the first object, and a node-un: :-e serial num-

ber. This prototype DID format places a limit of 256 COs per distributed object and 256

—_ — -
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8-Bits 16-Bits 8-Bits
A A
'S )
NUMBER
or HOMETOWN-NODE SERIAL
TAG | CONSTITUENT (“ROOT") NUMBER
OBJECTS

Figure 8.1: Distributed ID Format

distributed objects per node.

8.4.2 Dealing out the Constituent Objects

When a distributed object is allocated, we want to have a function that maps each con-
stituent object to a node number. This function should have several properties. It should

be (1) easy to compute, it should (2) scatter objects in an acceptable manner.

The goal of distribution is to provide concurrency, so with this aim as the measure of
success, any distribution scheme would be equivalent. But, we need to take into account how
the processor load is distributed around the network as well. There are two dichotomous
goals of constituent distribution, (1) to scatter the objects uniformly across the network so
there are no hotspots and (2) to scatter the objects locally to prevent long distance network

traffic.

Dispersion or Locality?

These seemingly contradictory aims argue against each other. If we scatter objects uni-
formly, especially if there are very few objects, the data may lie very far away from the
majority of the computation. Even though some of the computation will migrate near the

data and spawn from there, there still many be a great deal of network traffic caused by
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tride = [ nodes J
stnde = | constituents

node, = (birthnode + n x stride) mod nodes

Figure 8.2: Distribution of Constituent Objects

the processes still proceeding from the root of the computation. In time, migration of work

may balance the load appropriately, but we still have worries about uniform distribution.

On the other hand, if we clump the constituent objects close together, the computa-
tion will cluster around the data, and not hinder the performance of the rest of the network
via long distance traffic, but this local hotspot may overwhelm the computational resources

of this local area of processors.

A Simple Dispersal Approach

The first design of the distributed object system leaves this question for further study,
and adopts a simple, relatively disperse manner of dealing our constituent objects. We
adopt a simple uniform distribution strategy hoping that the load balancing mechanisms
incorporated into the system will work effectively. To insure the efficiency of the calculation
of the function, we .use the simple distribution algorithm shown in figure 8.2. The node
numbers w; describe are a finite interval of numbers {n € A': 0 < n < nodes} we might call
ordinal node numbers and not the system network address node numbers which encodes the
total addressing space of the network. The conversion between the two formats is simple.
Figure 8.3 shows some sample distributions for various sized networks, birthnodes, and

constituent object counts.




3 by 3 Network

4 by 4 Network
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Figure 8.3: Constituent Object Distributior Examples
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| = | currentnode-birthnode |  gtride + birthnode
lﬂmmﬂ&;-aﬁgm-tﬁnﬂﬂ] x stride + birthnode

if | < birthnode then [ = [-nodes mod constituents
if » < birthnode then r = r—nodes mod constituents

n = min(hops(currentnode,!), hops(currentnode,r))

Figure 8.4: Equations for Choosing a Nearby Constituent Object

8.4.3 Choosing a Constituent Object

We now have a first attempt mechanism to assign node numbers to each constituent ob ject.
Given a constituent object, we can find the node of its residence. For simplicity, we prevent
constituent objects from being migrated. Now, we waat to provide an algorithm to choose a
constituent object given a DID. We could do this randomly, but in order to take advantage
of locality, we want to choose a constituent object that is reasonably close to the curzent
node. We do this by finding the ordinal node numbers of the constituent object: 22 either
side of the current node number ({ and r for left and right) and choose the one (n) with the
minimum distance in x-y hops. We have to be careful about “wraparound”. The algorithm
is described in figure 8.4.




Chapter 9

Issues From a Prototype System

Keep thy heart with all diligence;
Jor out of it are the issues of life

— The Holy Bible, Proverbs {:23

This chapter discusses in some detail, relevant issues that occurred in the design and
implementation of a prototype operating system. The following topics will be discussed

o The sizing of the BRAT

¢ How to handle a full translation table
e The scarcity of virtual names

¢ Out of memory problems
¢ Queue size
o Queues, stacks, and saving processor state

These situations are troubling enough to require discussion. The actual prototype imple-
mentation can be found in an appendix at the end of the thesis. Specifications of the system

calls and message handlers can also be found in the appendices.

83
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9.1 Sizing the BRAT

To support the global virtual namespace, we use the Birth/Residence Address Table to
hold the necessary translation bindings. This serves a purpoee similar to a page table in
a multi-level paged memory system, or a segment table in a segment addressable memory
system. The BRAT needs to hold at least

1. virtual — physical mappings for objects residing on this node

2. virtual — node number links for objects that were born on this node, but now reside
elsewhere

9.1.1 Memory Limitation

But, due to the small amount of memory on each chip, we face a severe restriction on
the number of bindings that can be stored. Reserving room for system data structures,
operating system variables, and the heap, we are left with a paltry amount of memory for
the BRAT. This will directly limit the amount of objects creatable on a node. We must
make a careful compromise between heap size and translation table entries. We must also be
able to purge entries from the table when objects are deleted, stressing an efficient storage

reclamation strategy.

9.1.2 BRAT Use Scenarios

Let’s take a look at a few possible scenarios that can occur with object management.

1. There is room left in the heap and the BRAT for more objacts to be allocated.
2. There is room left in the BRAT but no more room left in the heap.

3. The heap contains many small objects that don’t take up much room, but fill the
BRAT, so that no more objects can be created.

4. The heap can be nearly empty, but no more objects can be allocated because the
BRAT is full of entries of migrated objects.

- olm—
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The first case is the most desirable one, we wish we could have this happen all the time.
The second case is undesirable, but will probably happen reasonably often due to the small
memory space. This can be rectified by exporting objects to other nodes to free up heap
space. The third and fourth scenarios, however, occur because of lack of translation table
space due to the presence of large amounts of resident and /or migrated objects. It is these

two cases that we would like to minimize.

The prototype system that was developed assumed 1K of RAM per node. Of this
memory, 424 words were reserved for processor and OS data structures. Thus each processor
is left with only 600 words to be shared between the heap and the translation table. The

question that appears, is how to partition the BRAT and the heap in a reasnable manner.

9.1.3 A Prototype Sizing Based On Average Object Size

We have no measures as to object size in our system, but we might be able to suggest a
reasonable approximation of, say, 10 words per object!. With 2 words of header for each
object, this would leave 8 words of object space. So, each object would take up 10 words
of heap space and 2 words of BRAT space, allowing 5 = 60 objects. But, we also need to
reserve room for bindings of objects born on this node, but now residing elsewhere. Let's
assume that we pick a limit for this, such as the total number of average-size objects that
could fit in the heap. This would allow us to migrate every object and STILL fill the heap
with average sized objects. This leaves us with the following equations.

heapsize + bratsize = freememory
residentobjects = heapsize
migratedobjects = residentob jects

bratsize = 2 (residentobjects + migr.tedobjects)

'Though of course this will depend greatly on the type of program being run.
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== heapsize = § x freememory

= bratsize = § x freemeniory
With 600 words of free space, this leaves the following parameters.

heapsize = 428

bratsize = 172
In a 4K RAM node, we might expect the following configuration as a reasonable one.

heapsize = 2552

bratsize = 1020

In the prototype operating system, the BRAT size has been set at 128 words, rather that

172, for ease of implementation.

9.2 Running Out of Binding Space

Sooner or later, with even our best efforts at insightful sizing of the BRAT, we will run
out of room to make any bindings. There are several conceivable ways of resolving this

situation.
1. Throw up your hands and quit.
Forward your allocation request to another node.
Make the BRAT bigger.
“Delegz* " some of the bindings in the BRAT to another node.

Change the hometown nodes of some virtual addresses to make other nodes responsible
for their bindings.

S o o

The current operating system implements choice 1 for the most part. There is also some
code to support choice number 2, but this is complicated by the fact that we might not be

)
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able to allocate a context (as discussed in an upcoming section). If this mechanism could
be made to work, it might be acceptable enough, realizing that any system will break when
the nodes begin to run out of memory. The investment in a proper load-balancing policy
may alleviate this problem. The operating system also supports the resizing of the BRAT,
but because of the hashing mechanism currently used (described in an upcoming section)

arbitrary resizing of the BRAT is difficult to do.

The delegation of IDs is possible, but requires some thought. We need a way to
specify which IDs are delegated to which nodes, and this should take significanly less storage
than would be required to actually store the bindings. We could delegate ranges of IDs to
a node, but this node must have room for the range, and when this new node runs out of
room, it must also be able to delegate. This is a possibility for the future. The fifth item
in the list, changing the birthnodes of virtual addresses would be very expensive requiring
some synchronization, and a large broadcast of messages. But, perhaps this could be done
during the garbage collection phase, or offiine, or at the end of the day as a background job
(given a suitably large machine).

9.3 Scarcity of IDs

As a related issue, given the virtual ID format of 16 bits of birthnode and 16 bits of serial
number, each node can only generate 65536 IDs. In the current system, it is likely that
many applications would run through this ID space in a fantastically short amount of time.
Of course, The time is dependent on the applications that are run, but we can sketch a rough

estimate for how long we can run before running out of IDs on a node.

The following calculations assume a 10MHz processing node where the average in-
struction length is 1.5 cycles long. We assume that the queue is always full of work to be

done. We assume that each message-spawned task work will be 200 instructions long (far
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;bove the likely amount). We finally assume that only 10% of the tasks that come in will

involve an allocation of an object.

107cycles 1 instruction . 1 task N 1a.lloca.tions _ 6667alloca.tions
second 1.5 cycles = 200 instructions =~  task second

At this rate, a node would run out of IDs in 18 seconds. Though these numbers are
questionable at best in the absence of actual measurements, it is quite clear that the ID
space is compeletely inadequate. We have to have a larger virtual ID, say by having 68 bit
words rather than 36 bit words, but in the meantime it might suffice to (1) borrow bits from
the node number field or (2) attempting to re-use certain IDs. Borrowing bits would be a
short time solution, by limiting our prototype machine to a 1K machine, we could get a 64
fold increase in serial numbers, allowing a node to run for 20 minutes with the assumptions
made above. But, for simplicity’s sake, the current implementation has not adopted this
format. It would be a good idea to do this in ihe future until we build a machine with

larger words.

The second idea is a more interesting research issue. We already reuse context
IDs by requiring contexts to have received all replies before they are put on the free list.
This way, the amount of IDs reserved for contexts (probably the most frequently allocated
object) is significantly cut. There may also be ways of reusing normal object IDs, but a
space efficient way of noting these reused IDs may be difficult. Here are a few possible ideas

on how to reuse IDs.

1. Keep a fixed size table of free [Ds. When an ob{'ect is freed, the ID will be placed in
the table. When an ID is needed, this free table will first be checked. The biggest
problem with this prouh‘ is that when the table fills, IDs will not be placed in the
table and they will be “lost” forever.

2. Provid. a separate routine for allocating “short-lived” objects. These objects would
take their IDs from a common, fixed-size pool of consecutive IDs whose freeness could
be signified by a single bit for each ID. For example, we might reserve 256 “short-
lived” IDs per node. The short-lived IDs’ serial numbers t range from 0 to 255
and the pool could be rfsrmnted by 8 32 bit words signifying an array of 256 bits,
where a 0 indicates the ID is in use, and a 1 indicating that it 1s free. If these objects
are truly short-lived, and they represent the bulk of ID requests, then this approach
might greatly extend the lifetime by conserving regular IDs.
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3. Every now and then, perform an ID “garbage collection and compaction” where all
IDs are renamed to consecutive IDs in effect compacting the ID space. This involves
similar issues to the mechanism of changing an ID’s hometown node number. It seems
to be very expensive, but it may be possible to interleave this with the normal garbage
collection.

The currently implemented mechanism only reuses context IDs (a fixed amount). No at-

tempt is currently made to reuse other object’s IDs.

9.4 The Shortage of Memory

Of course, the scarcity of memory per node will also prove to be a problem. The goal
is to take advantage of the large collective memory provided by the system (a 4096 node
J-Machine with 4K memory per node would have 16 megabytes of primary memory). Load
balancing can be used not only in choosing processors to perform work, but also in choosing
nodes to allocate memory from. Simple gradient plane approaches [RF87] can be used
to cool down memory “hot spots”. Garbage collection, expanded memory nodes, and the
sweeping of “dusty” objects to offline storage are al! possible solutions to the memory
shortage problem.

The current prototype operating system kernel takes two approaches to memory.
If a message arrives to allocate an object, and there is not enough memory available, the
message is forwarded to another node. However, if a process has been running for a while
and the node runs out of memory, the calling message cannot simply be forwarded, since
some work has already taken place. Instead, the process must have its state saved in a
context, and room must be made on this node by evicting certain objects. Unfortunately,
there might not be enough memory to allocate a context. A solution out of this trap is to
require that there always be one minimal sized context object available for each priority
level. A check could be made in the CALL and SEND handlers (and any other message

handlers that could fall into these circumstances) for a free context.
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9.5 Queue Size

Queue sizing also proves to be a problem in the system. Since we want to be able to migrate
objects by message sends, an empty queue must always be big enough to hold every object.
This means that the quene must be as big as every heap. This is far too costly in terms
of memory in the 1K node prototype, and we have not attempted to make a fix. It would
always be possible, though admittedly tedious, to send messages in “chunks” that would be

able to fit in the queues.

9.6 Suspension and Processor State

Whenever a process suspends and plan on restarting later, it must be able to save its
processor state. This normally means its register set, but we must not forget about two
other forms of processor state, queues and stacks. When we suspend and there is a message
we want to save in the queue, we copy it out into a heap object and set the message pointer
to point to the object instead of the queue. Stacks are more of a difficulty to save and
restore, and we have decided to explicitly prohibit the saving of stack frames. So, the
operating system is given the task of insuring it will never have to suspend and restart
with information on the stacks. This was a source of much personal misery during the
implementation of the OS (though certainly less than there would have been without the
existance of stacks).

9.7 Summary

This chapter has touched on just a few of the difficulties in the design of the Jellybean
Operating System Software. Some are due to inadequacies in hardware or scale, some are

due to lack of behavioral measurements, and some due to lack of insight. These will most
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likely become thoroughly examined as the machine design progresses into subsequent stages.

-



Chapter 10

Performance Evaluation

Never promise more than you can perform.

—  “Publilius Syrus”, Mazim 528

This chapter provides a quantitative performance evaluation of several important
system services. Though the prototype implementation is certainly not optimal in any way,
it should be a reasonable approximation of an actual working operating system kernel, and
as such, the numbers presented in the chapter should be useful for the design and tuning
of the rest of the Jellybean system. In addition, we should be able to see what parts of the
system need fixing, before the machine is fabricated.

10.1 The Virtual Binding Tables

The virtual name manager is composed of five system routines nested in the hierarchy
shown in figure 10.1. The BRAT itself is composed of a 128 word binding table of 64 2-
word bindings. Words are entered by a linear probing [Sed83] scheme where a hash function

determines the first choice for the location of the binding, and a linear search is performed
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BRAT_ENTER

BRAT_ENTER_NEW

BRAT_XLATE

BRAT_PURGE

Figure 10.1: The Hierarchy of the Virtual Name Manager

from there. This linear search can take a significant amount of time (at least on the scale }

of average task size), so we need (1) an efficient algorithm and (2) a successful hashing

scheme. The remainder of this section examines the execution time of each BRAT routine

and presents some very preliminary hashing measurements.

10.1.1 Inosruction Counte

The BRAT PEEK system call is the core to all of the virtuasl name services. It takes a
key to hash and a data word to match (not necessarily the same, since you might want ¢o0




-~

CHAPTER 10. PERFORMANCE EVALUATION 94

look for the first NIL slot where & certain key could be placed, as is done when adding new
entries). The key is hashed, providing the iﬁdex into the table, and a linear search with
wraparound proceeds from here. The cost of this call is between 22 and 540 instructions,
based on how far the search has to progress. A reasonable cost approximation, Ceqy, for

a search that finds the data in the ntB glot is 22 + 8 x {n - 1) steps.

The rest of the BRAT calls utilize this BRAT_PEEK routine.

e BRAT XLATE looks up a binding in the BRAT and ta.k\es 27 + Cpeek steps to com-
plete.

o BRAT PURGE searches the BRAT until it finds the first binding of the specified
word, and removes it from the table. This takes 30 + C peek 8teps to complete.

o BRAT_ENTERNEW adds a new entry to the BRAT without first removmg any
previous bindings. It accomplishes its task in 32 4+ C peek Steps.

e The most nsive routine, potentially, is the BRAT.ENTER routine. This is

like BRAT_ ENTER.NEW, but it first removes a previous binding, requiring another
BRAT search. This can take as much as 32 + 2 x C peek Steps.

10.1.2 Effectiveness of Linear Probing

Evidently, the crucial factor in the effectiveness of the BRAT routines is the cost of peeking
through the BRAT, Cpeekv which is a linear function of how far away from the expected hash
spot the value resides. What the average distance in hash steps will be for a typical machine,
depends greatly on (1) the application that is being run, (2) how storage reclamation is
handled, (3) and what is done when the BRAT overflows — all issues needing further
study. Nonetheless, I would like to proceed with an informal, ad hoc analysis, based on
reasonable estimates and educated guesswork. The rationale is to see if the linear probing
strategy seems to generally work — by that, meaning that the average number of steps is
small until the entry is found!.

‘It is not obvious that this will so. In fact, it is quite easy to be concerned that this lineaz rehashing
approach might actually work itself into & steady state where entries were always very far away from where
they were supposed to be.

B e T,
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The following data was generated by a simulation program called bratsim that takes
an input pattern of references and simulates their effect on the BRAT. The size and max-
imum fullness of the BRAT is specifiable. The simulator takes each reference and looks it
up in the BRAT.

o If the reference is in the BRAT, it records the number of steps away from where it
shouid be.

o If tl:e reference is not in the BRAT, it is entered as soon as possible after its hashed
spot.

o When names get entered, some may be arbitrarily deleted to maintain a maximum
full percentage.

o If the BRAT fills, a random slot will be emptied.

The reference pattern generator is also based on initial approximations, generating patterns
possibly likely in applications we envision running. It is currently configured with the
following parameters: 10% new IDs, 20% context IDs, 35% recent IDs to simulate locality,
20% less local IDs, and 15% very random IDs to simulate class/selector bindings, method
IDs and other references following less of a pattern. I would expect this estimate to be

conservative.

Based on these estimates, and the reclamation model presented above, we can chart
how many steps away from the hashed slot particular IDs Jand when they are entered. For a
64 word table, this is graphed in figure 10.2. We see an asymptotic function relating BRAT
space used and the locality of entries to their intended slots. For the 64 row example, the
system begins to be unmanageable after the BRAT becomes more than 60 - 70% full.

Figure 10.3 shows the effect of doubling the BRAT size. The trend is still rapidly
increasing, but the gains we get in terms of object storage may outweigh the extra steps
involved in luvcup. The filatness of the middle portion, from 40 - 60% Rints at a desirable
operating region. ’

So, now I would like to suggest educated guesses to the aaswers to the following two

questions.
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Average ENTER Distance From Hashed Siot
8 8
—
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Maximum Percentage of BRAT Space Used (64 Rows)

~ Figure 10.2: 64 Row BRAT Enter Distances from Hashed Slot
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" Figure 10.3: 12§ Rew BRAT Enter Distances from Hashed Siot
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1. How full should we allow the BRAT to get?

2. How large should the BRAT be?

In the last few paragraphs, [ indicated the severity of the BRAT filling problem. After 70%
capacity, the BRAT's performance becomes intolerable. For this reason, I suggest that 70%
capacity should be an absolute maximum for BRAT size, and the normal operating size

should not usually exceed 50%. I propose this as the answer for question 1.

Question aumber 2 can be answered by adapting the analysis presented in the last

chapter. The new constraint equations become.

heapsize 4+ totalbratsize = freememory
residentobjects = Aeapsize
migratedobjects = residentobjects
bratspaceused = 2 (residentobjects + migratedobjects)
bratspaceused = .7 X totalbratsize
= totalbratsize = ¢ x freememory

== heapsize = {[ X freememory

With 600 words. of free space, this reserves 218 words for the BRAT and 382 words for the
heap. This will hopefully be a more accurate value, though it is not a power of 2, which
will complicate the hashing slightly.

The efficient manipulation of the BRAT is crucial to the success of the Jellybean
system. Future study is needed to evaluate hashing functions, and perhaps a form of linear
re-hashing is desired, where the first hash is followed by a subsequent number of other
hashes instead of a linear search. In addition, once real applications are run, we can get a
better idea how the system will behave. Likewise, the translation buffer performance needs
analysis, as this will indicate how often BRAT lookup occurs.

e
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10.2 Object Allocation

A common task of the Jellyban Operating System Software is to allocate objects from the

heap. This section will examine how costly this operation can be.

Figure 10.4 describes the nesting of services required to perform the NEW system
call. The ALLOC routine takes 24 instructions, it takes 19 instructions to generate a new
ID and it takes 32 + Cpeek instructions to enter a new ID into the BRAT. With 20 cycles
for inter-module glue, the NEW system call takes 95 + Cpeek instructions.  According to
the BRAT analysis results, if we operate at less than 70% full, we will bave to take less
than 10 steps to enter a new ID, this would indicate that Cpeek = 94 steps and therefore,
NEW should take 95 + 94 = 189 instructions. At best, with 0 steps to search, the NEW
call would take 117 steps.

10.3 Context Allocation

Another commonly executed routine is the NEW_CONTEXT system call. As described in
chapter 5, this service was expected to be expensive enough to merit special treatment. The
context free list was developed to provide a pool of pre-allocated contexts for fast context
allocation. The flowchart in figure 10.5 shows the steps taken by routine. Note that if the
requested context is of an abnormal size, or if there are no pre-allocated contexts on the
free list, the NEW routine is called to allocate a new object. Requesting an abnormally
sized context takes 25 + Cnew instructions, allocating a context when node are on the free
list takes 27 4+ Cpew instructions, but allocating a context off the free list takes only 20. If

we can keep contexts in the pool, we will do well.

Freeing contexts is also fast, taking only 25 instructions. This is only about 10%

of the time it used to take to perform this operation, when we were required to purge the
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NEW
ALLOC GEND BRAT_ENTER_NEW
y
BRAT_PEEK

Figure 10.4: Nesting of Services for the NEW System Call
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Translate this context ID
into a physical address,
set the free list to the odr

an return the address

Figure 10.5: Flowchart for the NEW.CONTEXT System Call
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old context ID, generate a new one, and place the new ID in the context and BRAT. By

preventing late replies to contexts, we have prevented this performance loss.

10.4 Boot Code and Message Handlers

Let’s conclude the chapter with a brief discussion of the complexity of the Bootstrap code
and several message handlers. The boot code is run when each processor is powered up,
and places the processor in a runnable state. All together, it takes 5005 steps to boot the
processor. This is made up of 4103 steps to erase the memory, 481 steps to initialize the
context free list with 3 contexts, 247 steps to fill the exception vector table, 86 steps to fill
the extended call table and 72 steps to set up the stacks, queues and other values.

The WRITE message handler takes 8 + 7 x | + 3 steps to send ! words of data. The
READ message handler takes 8 steps to read an empty message, or 74 5 x (I — 1) steps to
read a block of data of length /.

The CALL message handler can exhibit several poesible times. If the method being
CALLed is local, it only takes 6 instructions to start it executing. If the method is local,
but not in the cache, it takes 64 + Cpeek stepr, because the XLATE exception handler
takes 58 + Cpeek steps to complete. If the method is not local, message sends are involved
making it more difficult to analyze.

10.5 ROM Size

Out of the 1024 words reserved for ROM, the operating system prototype uses 760.
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10.6 Summary

This section presented a brief performance evaluation of several important parts of the
Jellybean system. In addition to analyzing the cost of routines, several more fundamental

issues were noticed. These are itemized below.

o The BRAT needs to be searched efficiently. The linear probing method used can take
a significantly long time if values get placed far from their intended position.

e Based on preliminary simulation, the performance becomes nnu:c?table when the
BRAT gets to 60 to 70 percent full. We can choose 2 maximum fullness, and derive
the BRAT and heap sizes based on the fullness value and the expected size of objects.

e We note that even with an insightful configuration of the BRAT, a translation cache
is required. The configuration of the cacha is left to further study.

o Creating a new object is more expensive than we would like (a minimum of 117 instruc-
tions). This could be optimized with clever coding, but not much more performance
could be gained by this manner. The 'froblem is more fundamental resting on the
performance of the cache and the BRAT lookup.

o The caching of free contexts seems to work well. Creating a new context requires
only 20 instructions if there is a context on the free list {and assuming we don't get
a translation fauit). This is compared to a minimum of 144 instructions without a
context on the free list. Freeing a context is also fast, only 25 instructions.

¢ Calling a local method takes only 6 instructions if the method is local and its trans-
lation is in the cache! If it is not in the cache, performance again suffers, requiring a
minimum of 86 instructions.

Table 10.1 summarizes some of the more important performance statistics presented in this

chapter.
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Routine Instruction Count Notes

BRAT .PEEK Cpeek =22+ 8 (n = 1) | n = slots to search

BRAT XLATE 27 + Cpeek

BRAT.PURGE 30 + Cpeek

BRAT ENTER.NEW | 32+ Cpeek

BRAT ENTER 32+ 2 X Cpeek maximum

ALLOC 24

GENID 19

NEW 95 + Cpeek

NEW_.CONTEXT 20 with context on free list
27+ Cpeek no context on free list

FREE.CONTEXT 25 .

CALLMSG 6 with method ID in cache
64 + Cpeek method ID not in cache

Table 10.1: Timings for Common System Services

R P




Chapter 11

Conclusions

All’s well that ends well

— SHAKESPEARE, in All’s Well That Ends Well 1V

There is a time for many words,
and there is also a time for sleep.

— HoMenr, in The lliad, XI

11.1 Summary

The Jellybean Operating System Software is a prototype operating system kernel for the
Jellybean Machine. Its duties include object-based storage allocation, virtual distributed
naming, object migration, process definition and control, local and remote process execu-
tion, and the support of an object-orient calling model.

This thesis described the JOSS in some detail, its successes and weaknesses. The

report also talks about issues in the future Jellybean operating mum that were not imple-

( mented in the prototype because of lack of support, study and time. These include storage
reclamation, resource distribution bureacracies, and distributed objects. These will most

105
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likely become important parts of the Jellybean operating environmeat in the future.

Several deficiencies may exist in the current system. Performance-wise, searching
the translation table may well be too slow. Several solutions can be proposed including (l).,ﬂ
increasing the size of the BRAT and decreasing the fullness, (2) experimenting with various
hashing functions and (3) providing an effective translation buffer. Memory shortages may
provided a significant problem, and this will place an extra burden on recla.m_l_.t_ion attempts,

which are already made difficult because of the problem of travelling references.

On the other hand, if the cache works well, and if the BRAT is not very full, the
whole system seems to perform admirally. Method invocations are powerful but fast. The
context free list allows rapid creation and reuse of contexts. The global naming system and-

migration provides a high degree of flexibility.

11.2 Suggestions for Further Study

This thesis scratched the surface of many interesting research issues, many of which I for.

one would be eager to investigate.

In the area of performance evaluation, the configuration and simulation the transla-
tion buffer and BRAT in a real life environment is important to the success of the Jellybean
Machine. Also of practical as well as theoretical interest would be the study and evaluation

of distribution hierarchies and the various manifestations of how to handle virtual hints.

Reclamation is an important potential area of research. An efficient mechanism to
collect garbage over a distributed network would be of general interest as welly especially if
some incremental form of collection can be developed. Policies for handling out of memory

conditions on processing nodes is also attractive, involving selective migration of objects.

Finally, load and resource balancing policies need to be investigated, especially since

each processor can quickly become overwhelmed (being limited in power and memory ca-
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pacity). Simple gradient plane approaches might be attempted where load spreads to where
it is lower. Network analysis will also be an important factor.

11.3 Hopes

The Jellybean Machine has the potential of being an important step in the development of
maulticomputer networks. It is my hope that further study will be encouraged so that the
difficulties of machines of this genre can be resclved (memory shortages, expensive name
translation, no caching of mutabie objecu.' need for resource balancing, etc.) and they can
show their benefits as scalable, programmable processors.
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_ﬂl‘ll’)“'h 0.AZ.A3 '
A2, 3 Are we at the end of massege
[ 1 R3,“~_WRITE_MIG_EXIT 3 If 30, it
MVE  no,A31, : GOt 2 "hunk o deta®
MOVE  Re,(RY,A2) ; Toss 1t 1nto the destination
ADD , 1,00
ADD R1,1,RY
[ - 1
AR
WRITE_MO8_DND:

R T L S TN




[ L

E
i

z;;
l-§§=g=g§=§igassggg

,§
B

- ocace

[1.A3),R1
L)

!lo (source-aduress) (repty-nede) (Peply-hedder)

$TRY K- n:usﬁh of ‘Bourée
0

H
RY <~ tongth

: 1 te 0, ‘Cintinue

3 IF no length, Just metl Nar

; Convare 1V ‘te - dPriet
H mm.uu [,
1 Sénd reply Noster

'h"l“l-f 1 {ndex?
inetebd

u_pﬁ -- nun.n mmum-nm«mummm



CALL_MSG -- Message routine to run s mathed
CALL (method-1d) (method-specific-srgs)s

'
i
i
.
.
i
B

CALL_M8G:

XLATE  R2,R0,XLA
CHECK RO, TAG_INT.R?
oc P:2

2 <¢- Method-id

RO <- Method address

Is this & hint?

IP <- Offset of 2 1nto methed

PUSH RO

roP P
CALL_MSG_END:
i SEND_MSG -- Message routine to take an ob , and send the object
H referenced by the ID the selecter 'n’.f‘ :y-ol If the ebject
H 18 local, the methad 1s run. If the cdject mmm.
H we forward the "3898 to the node.
i SEND (selector-symbol) (object-1d) (srgs)s
SEND_MOG:

[ m START ; Jump te mafn code
SEND_MSG_FORWARD_TO,

un RY,-SY8 xo m Shift Sirthnode nusber

n svs fo unn!_mu:

‘“’—"‘h u. N
“"-"‘z""‘"“’:. R2.02

~SEND_M8_FORVARD_EXIT
(l° M)
%0,1,00
~SEND_MBG_FORMARD_LOOP

e

SENO_MBG_START:

l§§S

€0,A3],R0
RO,SYS_| R3
£2,A31,11

XLATE  RY,RO,XLATE_LOCAL

OEEK  Ro-TAG T -To
”';ﬁbm‘m_nm
(2 l

RO,AR

m R
ko i
SY8_SELECTOR_BITS
rt, R0, r1

R1,1,A3),R1
RY,TAG_CS,R1

3

.o

. e

@9 we ®e Be T WD TE B e B G5 o0 G4 Tv TS Ve Be Te VP W VO WS 4o Ve G4 wo W .. ws e we

e ws ws W5 we we

(]
Just keep node nusber fleld
Send dest. nede nuaber

RO <- Massege header

R3 <~ Length of wessage

R (- Object 10

RO <- Bound value of ebj 1D
If reve net here, forward meg
Is value & hint?
g?'mn-'m""
Copy adéress to AR

R1 <~ Noager of objest
;|ift [

§32
e
agan
133
2%
o
F
9

2

:

-

Morge with setecter

; Tep as & class/eslecter
MNethed

35’ ihnzf-hhw
l1(-:.mno' 0000008



-~ Mesange hangdier te aliesste and #111 & mathod fer a gtume

; e\-unm sadr. ‘nu‘gun ulls the lnan Wisahes andine
m“:.nm Iastal Wathed, mu“&um for u w -a"‘".'-""‘
f NOV_METNCD (class) (selester) (atze~of~eous) (wede)s
T [3.082,0 3 8 C- 9130 of ooty
[ ] 1N : Aid ] hoadyr L Y
e |_METHOD, R) s Rt C- Yathed elass
e D s e
‘-" ' 3 R ¢~ Sauron oPPd
wee 2, i R ¢~ Doud offent
e MOE  (3,A3),M0 i B8 <- S1a0 of eua
- u" = NS, “NN_METHOD_MBE_DNPMLL ; 17 ne 31z NS then tngmal)
e 31.&).“ : A3 <~ Dota wory
wove LN, AR) i NS ot word 1A Shjest
s a0,1,08 : Gonrquant stae
red R1,1,01 1 ureRent weures
:0 a2,1,08 3 buarement destinstien
m_%umu 3 e i e
X i 81 <= Thig neds nustay
oc M08 (CALL_MBRCCOYS_LEN_BITS) |4 ; B9 <- houder
oc Mxm ; 3‘2 mm:nw
o N i Sond IngAgYWiathed 10
e d l.n; : Send seas
&0 2,A3 : Sund selenter
seoE (OBJBCY_1D,A2) : Send usthed 10 & e
)

5

B e Vs + e ¢ =g e e e s




-« Message routing Lo create & new tnstance of 3 certsin class and
sa1) dack the IO.

NIV (size-eP-object) (class) (reply-1d) (reply-selester) (optienal-data)®

f-&

NEV_MEG:
© Vg 1.A3). i M0 <~ length of object
- ove 2,A3]),R1 3 R1 <~ class
CALL ;1 Make & new ebject
ANATE o, AT, XLATE OB i AR <- Address of object
; ess Copy Optional Data sse
oc "b] |::- Tow 10 DIt mask
ooveE » o RY 3 - M88s0gs header
H‘"Toﬂ RI.: INT.RY ] c:: l?u ] gl’
R, ; = length of seesspe
0ne f0.8, ; I first § srquaents
3 leaving spiens! dats
; length in 08
v 8,k 3 A1 <~ offest inte queve
o ]
[ RO, ~_NEV_MOGEXTY 1 If ne data left, extt
e RO, 1 ; Decresest
o RY,A3),R3 3 A3 (- Gata fPrem . SUPOSR
o (R2, ; Stere data fn ebject
ADD LIS L) 3
g 2.1,82
NN s Leee
NEV_JOOEXIT:
NOvE 3,A3),R1 3 R - raply ¢
[ 1-§v8_10_10_BITS 3 RO <~ § of Dits of ID
L A1,0M0,00 : ML nade # down & put 1n M0
E L] [ 1 Send dustinstion nede
oc MG {SEND_MBOCCSYS_LEN_BITS)I4 ; RO <- SEND mestege header
S N s Matl out the header
SEND 3,3 ; Send the terget id
%0 4,A) 3 Send the selocter
SENDE 1.,A2 1 Send naw obj ID as finsl ary
SUSPEND
NEV_M8_END:




Lask up & suhwdg ond A 2 J
Y wranpar.

8 -~
Meluding heatune o the repmeter M &
PN AANEST (netind-IB) (reply~nage)

Auns under: M Abselute sagn, Unshegbast

LENEY I TAPY PP N AT SN

v o..\b.\
M4 Jr“

LR RN &S

:i
n :m

|
bl
mm it :uu : u.,.mwu

e wlil .....w

't

)
m

- m——— s o -




)_ABGUEST_AEPLY_/BE -~ Store the asthed 1a an sbject and restart the

watt ist.

a oa se an s

"AERr P I ¢
To 5 2ok € m . LI z » g2
! i RPN S TR =3, 3
“mm it BT ik B p
TR O S I o xwmm.
i ol 8 L
u . : m
mw 3 ;o : mm R
TAERTAE I AR
SR et 0 ] .00 e | Wl B
| e ] i L 0 e
O P T ] T e L
Ik 3 i M 3.3 3

P
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b sl 1k Rl
5 : ¢
Wiy g
diailjaf§ !
EEYTA s fo2
B Aup: Al
LR TR
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“secenaa on

: RESTART_CONTEXT )G == Transfer centrol to & contamt
i AESTART_CONTEXT (contemt-1d)

; Runs under: AO Abselute mode

A0 <- Conteert ID
i Transfer

PN

a1 3 AR A A AP RNT Ny




-------- vesccesscacravencsssncnnn

'; WIGRATE_OBUECT )86 -~ M.n object Lo 3 new

MEGRATE_OBJECT (oBjest-1d) (nede-mumbir)

n"m "g:u R0 ; RO. ¢~ Onject ID
Ve tz.nmn_ " : R1 <~ Deat node number
CALL TRAP_NCALL : Migrats the abject
SUSPEND
MIGRATE_ORJECT_MOG_ENO:

: DHORATE_OBECT_MBG -- Lot this object reside on this node
i IMMIGRATE_OBUECT (object-1d) (previeus-residesss) (object-date)s

; Mung under: AG Absclute mode, unshacked

PUSH 1 ; Save 1nterrupt status
MOVE TRUE,RS ; RS <~ True
MOVE R3,1 ; Disable interrupts
MOVE (0,A3),R0 ; R0 <- Massage heeder
AND RO, SYS_LEN_MASK, RO ; A8 <~ Mossage length
UM ; Save messege length
g Rg,3,M i RO <~ Object length
MOVE  (3,A3],Rt : R1 ¢~ Object hesder
§ ) RY,-3Y8 81T, RY : Shift clags down
AND R1,9v8, ; R <~ Class of object
CALL m:syimc ; Mallocste me seme mewery
MvE  [3.A3), M2 : 12 <~ Object heoder
o SYS_UNMOVABLE _MASK ; A9 <~ Unmovebie DIt
o n2 e A2 ; Set uamowehle DIL 1n hesger
o n2.[0,A2) ; Set hasder of naw. cbject
MOVE {1,A3).00 ; A <~ Ghject ID
ove AR R 3 RV <~ Address of blech
i, PP« 4 Ak
CALL TR ; Enter tn BRAY
z‘ =.(‘.MJ H 21: =nd sl \‘mn 10
H - Heagage length
N RO, 1, A1 i RY (~ O7faat to Tast meg werd
SUB N0, 4, ; MO <~ Offast to end of dest
IMMISAATE_OBJECT LOOP:
"hﬂ. 2.‘.” e AL #irst date vera?
o M'NI H e, dane
MVE  (R1,A3],A2 : AR (- dats werd
Ve (R0, ; Put dets werd tn object
L 21,00 ; Oscrement A
wne R, 1,00 ; Dsoremsnt R
L] ~TMMIGRATE_OBJECT_LOOP ; Lomp
IMMIGRATE_OBJECT _EXIT

¢

; Pep int. dissble flag
o svs UNC | (NOW_RESIDINR_AT_MIRCCSYS_LEN_BITS)(3

o

SEND2  (2,A8), ; Send previeus neds #, hesder-

MOVE NNR, RO ; R0 <+ This node number

SENDAE [1.A3),7%0 ; Send.abj 1D end this nede .
DMMIGRATE_OBVECT _MBG_END:

f-nu_mmn_n_m «= Notify old residance of new residence & tel) bt;m
NOW_RESIDING AT (object-1d) (restdence-nods)
funs under: A0 Absolute mede, uncheched.

. v we we u

NOW_RESIDING_AT_MBG:
MOve ", 3 NOP prevent EARLY Fault
Ve E'.” , N t W<C-® 10
MOVE 2,A3], 81 3 Ry C- Rasidence Wode ¢
INTER 0,y T s ; G“ﬂ(. B .
MOVE  XCALL_SRAT_SNTER, : - BRAT, xeall
CALL TRAP. 1 g fn
HOvE E} LR i M <- Ghgect 1D
LSW »-8YS_10_10_BITS, At i Shift Bfrthnode nusber dewe
wTAS m.r&‘fm.m ; Sk ' INT
oc g _wcuww«%ﬂm
SENDR N, ] 5. Send %0 dirthnade
SN0 E'.Al : Send ab 0
fad 2,A9 ; Send now. residence node.
ove » ; A8 <~ This node ¢

e ——

LR PR

3




ca

sHoe N
USPEND
NOW_RESIOING_AT_MES_END¢

: Send £ a8 previous restdence

TE_BIRTHNODE )00
sark the ebject moveble

H
.
H
.
.
H
’
;
B

; Runs under: A0 Absoluta mods, unchecked

UPCATE_BIRTMNODE_MIG
MOvE NR,R2 H
Ve 1,A), R0 H
MOvE fa.u R H
m .n 3 1 3
s?ut l"!.ﬂ.ll 3
+» “UPDATE_BIRTHNOOE_MOVALE H
ENTER RO, RY H
wove T_ENTER, 3 :
LU0N ommuuwhu
e N :l:m _UNC | (OBJECT _MOVABLE _MIGCCEYS,
»n0 3
m (1,A3) H
USPEND
UPDATE_BIRTHNODE_MIG_END:

s mne

; UPDATE_SIRTMNODE (object-1d) (residence-nede) (previcus-neds)

R2 <- This node
" <- O,

== Notify the birthnede of the new residance, and

]
R < Rettdance Hode ¢

: RY (- Previous node ¢

Vas guy previously here?
If s, aa't rebind sgein
Cache RO ~> Rt

R3 <~ BMAT,
Bing 1n 14

.I-ll..ﬂ"ll

Sond header te residence

Send objeet ID

i OBJECT_MOVABLE_MEG -- Mark the object msveble
i OBUECT_MOVABLE (sbject-1d)

; fRuns under: A0 Abeotute mede, uncheched

§

OBJECT_MOVABLE )06 :

Ve RO, N H
OVE g.”].. $
ALATE +ARXLATE_OBY H
v (9,A2],R1 H
oc 1
ND A 3
v Rt,[0,A2) :
SUSPEND

NOP te provent CARLY fault

A8 <- Gbjest 1D
R1 <-

; A2 <- Object address

hesder
M <- AVE but unmoveble B1L
K1 <- Novenle ‘{C‘ hoater
"

i Vs hesder Besk

& ject




TRAPS

CALL
AD absoliuts mede,
(2]

sSYSTEm

nlu..m -+ Call an extended systes-gsl!

Rung under:
tnuua

H
D
H
u

* $ ﬂ.m W ® Mﬂﬂw ,nw
fi : i mmr m mwﬁmm,amr: I
s§t L Y] 3% 3¥ mumum 33 m :
ok [ o ik i i sl
T B e e Hei b
: u :
P v Ly, 8 B
SN TR I I T W.mm..:m.,.,_.,.__ o
2 eseded mmw wm..m,.numn- 2zya¥ly R m.m.n..m m.mmm.u. .-_ mwummm. .n..m.mm.mmmm
m rmm&m m_mm mmwz»zmmmmzmmmmmmu"mmrammaam;wzmnmmmw.zw
3% T L0 U6 T R T S i
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; Copy a bit o’ objest

Mumumm-
&
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mmnmnm.mmm-m
This tra@ Creatss & context ohject when given the aide of args
coMen cresved

0 ¢ B8 ©8 42 we s ¥E B4 e Be Bu We w we v we e we me we

: and locals tn A8, Yeshe Vike:

: suart ¢ !‘D: I__Fesder__

i start ¢ 1: -

; start ¢ 2: {Patste0Prast| (OPFsst from Masder to petads)
H start « 3 |Nexcs-Comtent

H start ¢+ 4: |

: start « S: I Spece —a

; AYAVAVAVAV. V) |

: | Lengsh of spacs in RO
H INAAANNL ==

; patate + 1: eI 00| (Method 1D)

: pstate o §= __{01___‘

: pstats + 3: —l0

H pstate ¢+ 4: 103 |

: pstave ¢ 8: | M|

B pstate + 6: |

H pstate + 7: |

: pstate « 8: p— —

H pstate + 9: ]

The address of the bleck is returned in Al & AR,
10 regtsters (IDt & IDR) are P1)1ed with the contat ID. The
HEADER & CONTEXT-ID fiaids are filled 1a
Kﬂw siot 13 F1lled with NIL.
to 11 tn the IDO-3, RO-3, and IP siots um thess veluss may b
corrupted while 1n the system TRAP cede. The PET
filled 1n with the effset frem the heeder of the centamt. Thia flele
eruumummmmnn.mmumummm
of contewt.

If the spece nesded 18 (v the nerma)l context size (defined

It

The scessganyting

this rovtine. The
s up to application cede

ATR-OPPERT fie1¢ e

by NORAL_SIZE), then a fast context 18 allecated off of the
free list if possidle.

funs under: A0 absolute mede, unchecked

Inputs: RO

Outputs: A, 1I01,A2, IDR

Treshes: ]

NEV_CONTEXT_TRP:
PUBH RY ; Seve MY
PUSH 2 ; Seve A2
PUSH L] : Seve RO
oc VAR _CFREE_LIST ; A0 <- Bage of CPfres Mtst
MOVE  RO,R2 ; Swep to A2
roP RO 3 Restere A0 with user sige
(14 RO, CONT_| SIZE, R ; 1s s1ze > nerwal sine?
or R, MOV _TRP_ 3 17 se, allecate a naw
MOVE CR2,A0), R} t Rt ¢- 15t cut in free
BNIL R1,“NEW_CONTEXT_TRP_ALLOC ; If no more nermal, then glieg
XLATE  R1,A1, XLATE_OBJ : A? <~ Comtamt
XLATE  R1,A2, NLATE OBJ : A2 <~ Contanct Adwr
MOVE  [CONT, aumr A1),M0 3 AD C- Wext Contet
MOVE n.tl!.n ; Point cfres 11st to next etat
MOVE NIL.RO t W< WML
MOVE RO, [ CONT_MEXT_CONTEXT,A1) i Erese next ctit ptr (for g¢)
POP "2 ; Resters A2
POP [ 1 Restere R1
POP » t Resurn
NEV_CONTEXT_TRP_ALLOC:

ADD R0,5,R0 ; RO <- Offset to pstate
PUSH N ; Save petate offset
ADD RO, CONT, ATE_SIIE,N0 3 A0 <~ Tetal contanxt ob) size
WOVE  CLASS i 3 3 R1 (- "contest® closs valus
CALL Yw“hl ; Ma® 8 New ebject
XLATE RO, AZ, XLATE_OBJ : A2 <~ Address of ebject
XLATE RO, AT, XLATE_OBJ ; Copy t@ AV
roP N - 1 Restere petate offset
ror ﬂ 1 Restere A2
poP ; Restere RY
HOVE n.tm PSTATE_OPFSET A2) 3 #1111 PETATE-OPPRRT etxt flolg
MOVE  NIL.RO : M C- NIL
zﬂ :o cm_mn CONTEXT,A2) ; Mo next centect

NEW_CONTEXT_TRP_END:




O e eeemen e eemeecmeemane st eeem st seeemeeenseraereeens S

; NEW_TRP -- Trap Lo generats a new object

: Takes the size of the object in RO and the ¢lass tn RY and allocates a block
H of memory for the object and assigns 1t a unique ID. The ID 13

H returned in RO. The header 13 tagged as an object header, and the

H class/length f1eld 13 filled in. The ID alot 1s filled with the .

: newly generated ID for this object. In addition, the XLATE cache

H & BRAT are updated.

; Runs under: A0 AbSOluts mode, Unchecked
; Inputs: RO,R1Y

; Outputs:
; Trashes: R1

F NEV_TRP:

PUSH 1 3 Push int, disable flag
PUSH A2 ; Save A2
PUSH R ; Save R3
MOvE TRUE,R3 i R3 <~ True
MOVE R3, I ; Otsable tnterrupts
CALL TRAP, ; Mellocate me some memory
LSk R1,SYS_LEN_OITS, R 3 Shift class past ‘Yen Dits
oR R, R0, Rt ; Merge class & length
WTAG  R1,TAG_OBUHEAD,R1 ; Tag class/length ss objhesder
MOVE R1,(0,A2]) : F11) 1at slot with class/len
CALL TRAP | ; Generate an 1d into RO
MOVE A2,R1 3 R1 ¢~ Address of block
ENTER RO A1 ; Enter 10/A0DR in XLATE table
MOVE XCALL_BRAT_ENTER_NEV,R3 : R3 ¢~ BRAT EnterNew Xcall ¢
CALL TRAP_XCALL ; Enter 1n BRAT
MOVE  RO,[T,A2) ; 111 2nd slot with ID
rOP R3 ; Restore R3
POP A2 ; Reatore A2
POP D4 : Pop int, disable flgg
POP P 3 Return

NEV_TRP_END:

o AP A L DM




.-;ﬁ:;:m“‘ 1.'»'-- n; to ﬂn; ;.;a-b;t node. numbar to hage .t
Pind an object on. £nter with the 10 of the object fn Rt
nd it with the nade number 1n RY.

Runs under: A0 Absolute fode
Inputs: Rt
Outputs: Ry

10_TO_NS0E_Te:
PUSH R2

R T TN VY

XLATE  R1,R1,XLATE_ID_TO_noog i XLATK lecally, n11 1¢ Auntioung

CHECKX  R%,T, N ; Doas tag = &‘l
1010 » »“ID_TO_NODE_EXIT i If not, we are done
0. _NOOE_LOCAL :

HOVE NNR, RY ; Rt (- msnoaw
10_T0_NoO®_Exty:

r2 ; Restore M2
Pop P ; Return

---..----...--.--.-----.--.---.o-.----.---n.-.-..-..--.-----------..-.

MALLOC Twp - Primitive samory s!lecator

Takes 1 of dleek to allogpte 1a A0 and sltoastes a ten this
-7:3"".. . mwnmumunwmtn .
If the block couldn't be 21lecated, A2 i3 set iveltd. Shoylg
be caltad with interrupts off or 5 hoap_ lock Plag set.

Runs under: M”muu. unchecked
H

Aol UL U T R

Input
Nn&tx A2
MALLOC_TRP:

PUsSH o

pusH 3

MOvE :: 1 Cony (1]
» H to

o VAR_FAgETOP 3 M <~ Orfast to vaR_FRegTOe

= e S
JRY, 3 - adiress ¢

oc m.mirlt i M0 <- Offagy VAR_BRAT._pass

NOve t“:mjl ; 80 - Sere of BRAY

e R3, N8, M0 i Yeuld naw block be teg big?

T RO, “_MALLOC_ 8D ;!ru.muu.‘m

gu 3.:;shmjm.n ; Shiy ::m-.,un w
Ry, H “. the ongth flelg

or R0,5Y8_RBL_MASK, R Mork addrass as relocstshie

wTag g,;:n,&.n } Cast mro -

MOvE . Cory to A2

¢ uq(m : 80 <- van_raagToe

mm g RO, A0 5 Update new Preetop

o 2

[ d Ry

e o

JALLOC_BAD:
CALL  TmAP DI 1
e . : O1e for now



..

If the si1zs of the context equals the normel fast context size, then
we place the context back onto the free 1ist after allocating &
new 10 for 1% (in case of late arriving context replies). Otherwise,
the context 18 marked for deletion.

Runs under: ?g Absolute Mode
)]

Input:
Trashes:
FREE_CONTEXT_TRP:

PUSH RO
PusH (3}
HovE 101,R0
CALL TRAP_FREE_SPECIFIED_CONTEXT
PoP R1
PoP RO

POP 1P
FREE_CONTEXT_TRP_ENO:

P LT T T L T g T L L T T Precsnasvascastanc,onsnasancnn

FREE_CONTEXT -« Free up the context in ID1

FREE_SPECIFIED_CONTEXT -- Free up the context specified tn RO

1f the s12e of the context equalis the normal fast context size, then
we place the context back onto the free 11st sfter sllocating a

the context 15 marked for deletion,

Runs under: AD Absolute Mode
Input: RO
Trashes: RO, RY

P N TR TR )

FREE_SPECIF xzo_co‘:rzx'r_w:

PUSH H
XLATE  R0,AZ,XLATE_OBJ H
(s =
» o . H
e m 'w_nnu_sm 1 ;
R, R H
EQUAL  R1,CONT’ SIZE,R1 :
" Rt, CONTEXT_TRP_KEEP_NIM
MOVE  (OBJECT_HOR,A2], K1 :
oR R1,8Y8 :
MOVE  R1,{OBJECT_HOR,A2) :
[ ~FREE_( _TRP_EXIT
FREE_CONTEXT_TRP_KEEP_HIM:
' sta No longer need to generate new 1D see
H PURGE RO :
; PUSH I
H PUSH (2] H
: MOVE TRUE,RI :
H MOVE 1,1 . xs :
; CALL  TRAP_NCALL 3
H CALL TRAP_GENID H
: MOVE  RO,(OBJECT_ID,A2) 3
H MOove A2,R1 :
: ENTER  RO,RY :
: MOVE  A2,R? :
: MOVE BRAT_ENTER,R3 1
; CALL . ;
H POP H
H rOP 4 3
: oc VAR_CFREE_LIST :
MOVE RO,A0],RY ]
MvE &1, foonT CONTEXT,A2] :
wvE  [ossecT_To,Ard.nt :
MOVE m,so.lu :
ml_mn_ng s
rOP 3

POP IP
FREE_SPECIFIED_CONTEXT_TRP_END:

TR i s Pt ¢ 11 bt

new 10 for it (1n case of lats arrtving context replies). Otherwise,

Save A2

A2 <- AdOr of context

RY (- Header of content

Rt <« Longth of contemt
Subtract & first words

RY ¢~ User spece size

Ia user space * norms) stze?
1P so0, add him %o the Vit
Rt ¢~ Hoader of centext
Set detetion bt

Move hdr back te object

Remove IO RO fram cache

Save B3
R3 ¢~ True

Patch new 10 tnte content
R1 ¢~ Contasct ADDR

Make new cache Dinding

R1 ¢~ Context Addrese

R3 <~ Enter Xcall ¢

Enter binding in BRAT
fsstere RI

Restore Interrupts

A0 <- Offsst to CPREE list

R1 ¢~ CFRER base

fut CPFREE 118t 88 newt ctit
R1 ¢- Object ID

CFREE 1ist <- Centesr> 1D

Restors A2
Return

TR VALY M T o
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GRNLD_TRP:

mmm




: VERSION_TRP -- Return the version nummer

bDits hold the ainer version number.
; Runs under: :g Absclute Mode

; Output:
; Trashes: Internally: e
H Totalty: L]
VERSION_TRP:

oc ROM_VERSION

ove [R0,A0),R0

rOP te
VERSTON_TRP_END:

;uwmsmminwm R0. The version nusber nulmu.raulu
. : where the high 18 Dits held the mejor version nuaber and the low 16

. .t m

XFER_TRP ~- Transfer exscution to a context

The routines XFER_ID_TRP and XFER_ADDR_TRP both transfer controt to & context

The context ts FREED afterwards.
Runs under: AQ Absolute Mode

XFER_ID_The 0

Trashes: Locally: RO, AG,AY
tTotally: RO,AD,AY

XFER_ADOR_TRP

Input: A

Trashes: Locally: R0, A0
Totalily: RO, A0

Never returns.

s as me e we @2 ve w4 we 92 Do yo @s s Br v B o wo
;
L
-

( XFER_IO_TRP:
wren m::;\g RO, A1, XLATE_OBJ
! H
PUsH I
MOVE  TRUE,RO
Ve W1
MOVE sgn.m_xn.m.n
Ve »IDt
v "0,[7,A0)
MOVE  A1.RO
LSM  RO,-SYS_LEN_SITS,N0
ADD r0,(conT_psTATE_OFFSET,A1],00
(M %0.8Y8 .
ADD  RO,CCONT_PETATE OFFSET,A1],00
ADD  RO.1,R0
' AFER, snua':”
‘%‘ 0,80
WRITER RO,$P
MOVE PSTATE_IP, A1), R0
I St
MOVE  (PSTATE_00,A1],R0
HOVE 'i;r::m m;n
WRITER sn.mgt- m.m.n
wmITER So.xga e
MOVE  [PETATE_NO,A1),80
"OVE gmm_m.m 1.m
"OvE PETATE AR, AV,
MOVE  (PSTATE_R3,A1),A3
PUSH RO
nEN R
MOVE  [OBJECT_10,A1],R0
CALL  TRAP_PREE_ConTEXT
T
')

-~
i

FEA
Ly

T ARRUEIER OB IER ) 2583 AL T A v ST

we = %0 B2 98 ©2 we WS Be We me W

®s =0 B we @5 we

-

sither referenced by virtual or physica) peinters. To trsnsfer by 10
onter with ID in RO. To transfer by address, enter with adoress 1n Al.

Get context addr 1n AV

N Q"YM

Dissble in

% - Gomems 15

sot 107 to comtawt ID

Store in current content

RO ¢~ Pointer to contant

Shift addr flold dowm
potate

" <- 0

Flush stack prepering
Por context resums

R ¢~ 0'¢ IP from context
Push IP en steck

e em e TRER E——————— Ly -




2%
i
iy
L

iy

100, R0 i R0 <- Mathod-ID frem | i
R0, “IPUR_ADIR_CLR_STACK i 17 106 sfet mit, ﬁl':“l.lﬁ
1

» t ] w
.40, ATE o

i
EE

SAMT_PEEK_TRP -- Fimis the current ghet of tlie TO th the BRAT

funs unger: A0 Absclute e, Undheshad

3 Inputs: A0, R1;A2

; Output: [ J

; The 1D to hash 10 gtve First offSet to start aserching frem fs 1n

; . A nn’mm:ma*m for. A2 hefds a peinter to
H the bese of the BT tabte. =-mm~1hu,mm;

3 A tims when ey wou'ld Yo i winife Bo 17 you were

; mso’m-mbm 30 Put 3 Mow value (n. Rele N0 WMid¢ be the
H now ID sinee we waul wint 1t %0 b 1 D preger phade. RY, uoule
: noum.m.mamm ouling t\w tot.
: Mmmnmmm.-?, " e start o

B 18 returned 1n M0.  Thts wil) Whigys e WWn.

: If the 1D 18 not in the brat, NIL ts returned fa W.

..

B* BJPeNENENE] iié

; Convert the ID inte an inftial ofPeet key tnte the BNAT
Cast M) inte an INV

"0, TAS_INT, %0 i
=8, iR »ae
-.n” 8”(‘”*(”)’.)
.8, ;R C- 1D e
A2, R s R <~ ?(D»'ﬂ
+ 18, A2 NI 3108
:."Isl lg:' wor (I > 26)
> 1 - L4 L
: ‘-uuz zzz-muﬁu
§ 14 - Sk
S:.. .Ji . ; Mow D Neten Wy fwee GIRY
3 Fing the table tengeh
sYvs,
ne A2, 3 MR <~ GRAT longan

; Search Per the ID starting at offeet

_nr_n:;_w:n T_PEEX_FAIL {4 | )
R H e Morey . !
(3] Rt, AR ], R0 Nave we feund wrgit?
e o™ _-h}m_mm !
- - t
a2,2.m 1 Oeorahiin. tengh 'm
s n3,2.08 cwrrent
"] "3,0,M0 : m o
4 RO, ~_BRAT_PERX_LOWP : IF set, leep
3 We must wrap sreund te tep of WRAT
Eo ~m A3 <- Length oF BIAT
o+ B, H - N
(T .2, Putnt o ' o™iy
- K ..h'{mx_ . 3 Potnt &0 top 1D g1dt 1n
3 17 1D not 10 sable, Wb o up MOTe
JIRAT AIL
. '% 'm.n : M- A
4 ‘an.- 3 W0 C- OPPast of 10 1n BT
-~
P »
SAT_PREX_TRP_B




EXTENDED

ROUTINES

i Runs Under: A Absolute Mode, Unchecked Mode

Inputs: RO, R1

]
p

PR B i

:
:

PRI

ORAT_ENTER_XTRP_END:

BB IR AN G e 2 Tt T 4 e 2

®F %6 B¢ me ve e Te B0 B4 Po W e

; BRAT_ENTER_XTRP -~ Add on I0/AOOR patr to the BRAT

Takes and IO/ADOR pair in RO & Rt and enters the pair into the BRAT.

A2 < 10
R3 <- ADOR

RO <~ OPPpet o SRAT varisble
R1 <~ SRAT_BASE

Shift BRAY_BASE to eder fiel¢

If offset nen ni), still reem
If ne reem, €te for new.

Put ID 1n 18t slet
Put ADDR 1n 2nd slot



o SR

T
LR Y "‘W’ ’

1
)

"eRELE e

O NVER NG -~ At a0y INASISOF \6 the MOAT .

T

e IR0 net.

JMade, Unshashes.tade.,
‘g

in 00 &.R1 end antare:

m«m
or Mt BE Sur
.lnl 184 for
8 fater way-to solee

0.8t

umnu

; fune Anders  AS Abeniste
; [opmtss
Tobas.

25 en on o0 oo 00 o8 oa ta ve oa

y
-4y A
e
llm:..:" )
ik

“mu
"N rem, ¢
- 10
nuut':)

s Mt AR {n g 2)ee

| P wm mnw mmnx m M

23z0 oz YREeficvasdidiccses acs
1 B elanuelBadilinedtel 20
i

"

44

SRAT_SNTER_NEV_XTRP_END:




SRAT_XLATE_XTRP -~ Xlate an ID from the ORAT 1nto an ADDR

funs Under: A0 Shadow, Unchecked Mode
Inputs: RO
Output: R0

Takes the [D to lookup in the BRAT tn RO. when the corresponding
ADOR value 1s found, 1t 13 returned in RO.

BRAT_XLATE_XTRP:
A2

PUBH
PUSH A2
PUSH  RY
MOVE  RO,A2 1 R2 ¢ 10
oc VAR_BRAT i RO <~ OPPsgt to BRAT vartable
x"'! t”lmt.‘ 3 R ¢- m‘l’”
LSH Rr1,R0, A7 i SR1ft BRAT_DASE to addr Pield
oc VAR_GRAT_LENGTH
or r, m.ﬁg.n 3 R2 C- GRAT base | length
s 1,748 A1 3 Cast A2 Inte an ADDR
MOV R1,A2 3 Move BRAT ptr inte AR
MVE  R2.M0
MOVE  R2,Rt
CALL  TRAP_BRAT_PEEX i Find offset & return in R
SNIL RO, ~_SRAT_XLATE_RETURN ; If RO nil return the af?
ADD ®0,1,R0 .
MOVE  [RO,A2),R0 ; Piek out ADDR & return tn RO
BRAT_XLATE_RETURN:
roP /1
o 2
roP A2
roP »
SRAT_XLATE_XTRP_ENO:

-

AT T AR R A I e L 2 T e

ST



Inpuss: A8

e we we s s B B2 we =

m_w:
A2
R
U m
PusH R0
o mLR2
oc VAR_GRAT_BASE
MVE (M0, A0),
ot
LSH K )
oc
oR r1,0ne,A8), M
g b/
NVE  R1L.A2
OV LM
MW A2,
CALL  TRAP_WMAT
T
WOV RO,RY
oc S0
WOWE  M0,[R1,A2)
ADD 1,81
WOVE M, [R1,A2)
R~k
ol
PO w2
]
d »
ORAT_RURGE_XTRP_EWD:

Bnter with ID 0 purge in RS,
the 1D & ABBR slet of the Dinging in the table.

SRAT_PURSE_XTRP -- Purge an m“n!r"-m-ﬂY
fung Ungor: A0 Shadew, Uncheched e

The revténs writes NEL 1nte Beth

< I

; W0 <- OPFsst %o BMAT verishle
i RY <~ SRAT_ AR

WifL SMAT_DASE to addr Pield

s A2 <~ GRAT base | lengah

Cust R2 106 an ADDR
Mova BMAT ptr into A2

el



; N!GMY! OBJECT | mr - Taku an object 1D and sends object t.o 8 node
3 : The ID of the object to migrate is 1n RO, and the destination node

B number 1s in R1,

If the object 13 not local, a MIGRATE_OBJECT MSG

H message 13 sent to the restdence of the object.

; Rung undar: AQ absolute mode, unchecked
; Inputs: . R
; Trashes: R2, R3

MIGRATE_OBJECT _XTRP:
PUSH 1

Save 01¢ 1-Disabie flag
.

MOVE TRUE, R2 ; R2 ¢~ Tru

MOVE 2,1 ; Disable interrupts

XLATE no.n.xun_m_ro_m ; R2 ¢~ Address of ID 1n RO
PUSH ; Save ID

CHECK u.'rn ; 1s object local?

RI, WIGRATE auecr LOCAL
SSAGE :

T
MIGRATE_OBJECT | rm

If so, mtgrate 1t

“sEnD residence node #

pC DBG (MIGRATE _OBUECT_MSGC<SYS L!N msm

SEND RO H header

or RO H lutm object 1D

SEND2E RO, RY ; Send object 1d & node ¢

POP b4 ; Restore interrupts

POP L4 : Return
MIGRATE_OBJECT_LOCAL:

PURGE RO ; Remove binding from cache

MOVE  XCALL_BRAT_PURGE,RJ : R3 - Purge Xeall ¢

CALL TRAP_| ; Purge RC from BRAT

AND R2,SYS_LEN_MASK,RI : R3 (—mﬁ of object

o M3G: SYS_UNC | ( IMMIGRATE_OBJECT_MBG((SYS. IS

ADD R0,R3,R0 ; Add Tength of object

ADD RO,3,R0 H m 3 for hdr, to. this node

SEND2 RV, RO ; Send node #, header

POP RO ; RO ¢- 10

SEND RO ; Send 10

MOVE NNR, RO ; RO <- T™his nod, #

SEND RO ; Send this node number

MOVE 0,R0 ; Current index » 0
MIGRATE_OBJECT _LOOP:

MOVE R2,A2 ; Copy abject address to A2

sus RI,1,RI ; Decrement tength

az RS, “MIGRATE_OBJECT_LAST 3 1f length » O, send last werd

SEND (Ro,A2) : Mai) out odbject werd

ADD RO, 1,R0 3 Increment index

[ ] “MIGRATE_OBJECT_LOOP ; Loop
MIGRATE _OBJECT_LAST:

SENOE ~ [R0,A2) ; Send final object word

ne TAG_OBUMEAD: SYS_MARK_MASK : RO ¢- Detetion merk mask

or no,[0,A2).R0 ; Mark hesder deleted

MOVE  Ro,[0,A2) ; Store back 1nto header

rOP 1 ; Rastore interrupts

rOP } (4 ; Return
MIGRATE_OBJECT_XTRP_END:

EXCEPTION HANDLERS

H
H
H
H
H

H
’
s
‘
‘
1
.
H

; INVADR_EXC -- Exception handler for access of an Ax register with [ bit set

Runs under: A0 sbsolute mode,unchecked
INVADR_EXC:
PuSH RO
PUSH (3]
PUSH L3
PUSM R3
MOVE ™R3 : RY - Paulting tnstruction
[ $Y3S_0PO, ; RO <- Mask to keep OPO filela
a  nk ; R2 <- OPO Plold
> ~(SYS_OPO_BITS » 2 + 2) ; RO <- B1ts to shift down
LSH R3, RO, R1 3 R1 <- Opeods
EQUAL  R1,2,R0 ; ls opcode 2 (READR)?
sr RO, ~“INVADR_EXC_REGC_ORIENTED ; If so, treat OPO speciatl
fQUAL R1,3, ; 1s opcode 3 (WRITER)?
L3 RO, ~INVADR_EXC_REG_ORIENTED : If s0, treat OPO spectal
INVADR_ENC_NORMAL_OPO:
MOVE A3 ; R3 <- 0 (masns curr. priority)
oC b33 s Mask L0 keep Ax Dits
AND R2,.R0,R2 ;3 R2 - A index
R ~INVADR_EXC_REXLATE ; Re-transiste IDx -> Ax

AV G A Y




LM,*

INVADR_EXC_REG_ORIENTED:
LSR  R2,~(3YS_OPO_ITS - 1),R3
o w1
N0 g.n.n
M MEXLATE:
”.‘l”
on 0,02,
xwwq_n&mg‘.“:
mm_w_w:
08,80
" ~THVADR_ENC_LATE
" ~INVADR_ENC_NLATE
w102,
™~ - XLATE
MOVE  1D3,%0
[ ~INVAGR_EXC_XLATE
MOvE  100°,M0
" ATHVACR_EXC_XLATE
o 101°,8
" ~INVAOR_ENC_XLATE
Wove  108°,M0
= ~INVADR_EXC_XLATE
MOVE  1I03'.M0
= AINVADR_EXC_KLATE
INVADR_EXC_ A

. v v

What {8 chject tan’t herel

e @ @4 B4 Ve Be WS B2 20 we Be o O¢ B2 We Be

R3 ¢- Relattve priority
Mashk to ket Ax Dits
&2 ¢- A tmdex

" <- (M)
Sranch ferwerd &3 werds
" <- 1
Brench and XLATE
» <- It
Sreneh and NMLATE
L ISR
Seanch SN0 XLATE
[ I3 ]
Sranch and XLATE
™ <- 108
Sranch and XLATE
» <
Srench end MLATR
LESR "
Sreneh and MLATE
» <~ IS
Sranch snd XLATE

R <~ Ager, Imt, or NIL

If XLATE Paults, we don’t save stasks)

Runs under: AQ shadow

. we e v

; Trashes: oo
EARLY_EXC:
MOVE RO,(TEMRO,A0)
ror RO
v RO, TAG_INT, NG
LM R0, -9,
) ] 0,171,800
LM h0,9,%0
vTag RO, TAG_IP, N0
PN [
nOvR (TEMPO,A0]), RO
roP 1r
GARLY_EXC_END:

. % B4 B0 5e @ 4o w4 We we

EARLY_EXC -- Exception handler for oarly QUeUs SCCess

ey
lgg;

a! :

;;23{;
i

;Mlm: AQ shadow

Trashes: TO®0
SID_EXC:
MOVE  %0,[TEN0,A0)
poP
VTAG  RO,TAG_INT,RO
L™ o9,
e "0,1,M
Via n':k_xr "3
SN RO
WVE  [(TBWPO,A0),R0
P IP
SEND_EXC_END:

s e e we we @0 So W 24 we

E'aiun_uc -« Enception handler for send buffer esverflow

e ®¢ e we we e

Trashes:
XLATE_DIC:
o Nei: N
MVE  RY[TEP1, A0
W R (Toee,A
Ve A3, (TEWw), A0
MADR TRP,RO
WTAE RO, TAG_INT,RO

- w e

MATE_DXC -- Bcption handler for transiation fayit
Runs under: AD ADeslute Mode, Uncheohed
-4

Seve deta registers 10
O - for use
s N arrey

R) <- Current prisrtity TRP



RO,(TEMPA,AQ)
il ]

XCALL_BRAT_XLATE,R3
RO, ~XLATE_ENC_NO_SINDING
R1,RO -

£3 a3sked
z
2

2
-
-

¢
]
133

R3
R3,-9,R3
R3,1,R3
R3,9,.R3
R3

33321 gete

¢
-
3
'
=
8
&

. o8y
gwﬁmrﬁum
R2,XLATE_FgTwio,fo
m~xuﬁmmmm

eagssasessé‘g =g=§=§ssss'

TP, RY

1191118
R1,R0,R2
R2, TEMPO

XULATE_EXC_METHOD, nunt e
ﬂ_uc:n'nm_m

XLATE_EXC_ID_TO_NODE_MOOE :
™, &1

RY,-7,R1

Rt,%11,RY

R1, TENPO,RY
CR1,A07,R1
R1,-SYS_ID_ID_SITS,RY
RY.SYS_TO_NOOE_MASK, R1
™”P, K2

L1111

3;2;2255328525522
-

|
%

R3,-9,R3
R3,1,R3
L AN

117

i TEMP4 (- Current priority TRP
; Pick out src. register field

; Aoe TM 88 start of array
i Load R0 with source ID
ucwt to Y

; See tP 1D 13 1n m‘r
i If not, handle no binding

3 Enter patir 1n cache

R3 <~ Returmn P

Shift IP unti) phase is LSO
Sack up one phase

R3 <~ Failed inst. IP

Put retry IP on stack

; Restore data registers

LR T PO,

Retry fatled instruction

3 RO <- Failed instruction

3 RO <~ mgsk O keep 0p2 field
i R2 <~ XLATE mode from opd

i Were we in XLATE_OBJ mode?

; If so, branch

; Were we 1n XLATE_I0_TO_nOOE?
; If so, branch

i Were we in XLATE_METHOD mode?
3 1f so, branch

i #88 Dest must De & data register! sss

R1 <~ Patled XLATE

R0 <- Mask to xeep Osat field
A2 <- Dest Pioltd of XLATE

R2 <- TempO{Oest)

RO <- NIL

TempO{Dest) <- NIL

Restore dats registers

* s we we o e @

; Return

Just die for now

3 Jump extender

R1 <- Failed XLATE
Shify Source Bits down
Just keep source bits

Gown
Rkeep nede nusber fteld
R2 <- Failed XLATE
RO <- Mask to keep Oast field
R2 <- Dest Pleld of XLATE
2 <- TBPO + Dest (Rx only!)
TO®P{Daat] = dirthnoda aumber
Restors data registers

® 0t we ©4 we os we e we we we We W
g

Return

ShifL IP unti! phase 1s LSO
Back up one phase
R3 ¢~ Fatled inst. IP

; Now R1 holds source 10, & retry IP 3 tn R3

IUY!_Et_SAVE_'I.?:
102
[0.A3),R2

§ e

T ALh AN b L Y e T

g

Save sy R
Push 102 on stack

i R2 C- Massage header

T e e




"o, -5Y8 0
z.sgﬂ 'ATE_OFFSET.A2), M0
=:sg’ ATE_OFPOEY ,A2), R0
”0,A2

<> 111"
-> Context

=> Patate
- 7"

CALL
(o]
MOVE
[
MOVE
LSH
ADD
LSH
ADD
ADD
MOVE

100 -> 1??
10t -> Contest
108 -> Y
108 <> 1*”?

.....
141 1

: P11 IP slet of centext
RS, (PITATE_IP,A2]
F11 1D slots in contat

w e we

"3
R3,(PRTATE_103.A2)

A3, [PETA .

T

R, (hemate_ton,a2)

A3, (PSTATE_100.A2)

P11 Rx slots in contat

)
NO: (CALL MBS (TS LB AITS )13
HANDLER_LOOKUP_METHOD

R, R
(OBJECT_1D,A2)

:
!

e

[(h,M0),R2
F70.M01,R3

LUHH B
=
=3

;
!
H
e
L
s8R

8
L
&
B

-+

- True

Otsable nterrupts.

Shifs odar sersion o
rtion

..:::: ofPset to adar

mirs portion beck up

N < Ao aperpa_ Tep>

A2 <- Peinter to patate *

¥

o e e Be.0e we Be wr e

; Contamy IP C- backed up 1P

; Petnt IDS to meg object
: 1D8 13 on atack

; Doss Tag = clasa/aqleetor?
i 1f not, wea ware xlating @ 14

i A3 ¢~ This node number
<~ header

e
i - ° thod code
i Send LookupMethed 1D,¢/s
; Send centext to reply o

i R3 <- Gase of mathod cechq
+ R3 <- Longth of sathag coche
; TEPS C- NIL

3 G0t RY back (cleam up latyr)

holdg the of
the length of the

; R2 <- OPfsat past mcache




—

XLATE_EXC_SEARCH_MC_10:
s

2, }' u Decresent offset

W R, 2 i Decrement )
€Q R1 tlz A], R0 ; Is this the 1d we went?
(14 RO, “XI XC_FOUND_MC_10D 3 1P s0, add context to 11st
L go*ﬂn' EXC_MC_LOOP If ent ", "
» MC_| H entry not ntl, loop agatn
MOVE {TO®4,A0], R0
BNNIL RO, “WLATE_EXC_MC_LOOP ; 17 TE®4 13 non-n1), loep
MOVE  R2,(TEMP4,.AO] ; Entry 18 nil, so P11
: with offset to this
; empty place.
XLATE cxc,n:_
n.-xun': sxc ;_SEARCH_MC_I0 ; If Yength te @, loop
rovl (TEMPs, AQ
BNNEL n.*xunmwrm ; 17 TEP4 not n11, wa found an
; empty space in the table.
XLATE_EXC_ENTER_IN_OVERFLOW_LIST:
Ve Ry, _RESOURCE A2 ] ; Resource = Methed 10
oc VAR_MCACHE_OVERFLOVW_L1ST ; ND <- Overflew 118t adar
MOvE » ; Copy V0o R2
MOVE (R0,A0), RO ; RO <~ Car of overfiow 113t
MOVE  RO,[CONT_NEXT_CONTEXT,A2] { Naxt contewt s rest of 1ist
MOV ([0BUECT_1D,A27.R0 ; RO <- Context-10
MOVE .[R2,A0) : OPlow Vist <~ Contewt-I0
[ ] AXLATE_EXC_MAIL_ORDER_METMOO  ; Matl for methed
XLATE_EXC_QGOT_ROOM:
Ve T (TD®4,.A0).R2 ; R2 <- Empty slet offset
MOVE  R1,[R2,A0) ; F111 MC 10 with mathod ID
XLATE_EXC_FOUND_MC_ID;
ADD R2,1,R2 ; Point offset to wait list
MOvE Eu.m].n 3 RO <~ {car wait-1tat)
MOVE OOJECT_1D,A21,R) : A3 ¢- Contewt-ID
MOVE n.Eu.m ; Potnt wait-11st t0 centemt
MOVE RO, { CONT_NEXT_CONTEXT,A2] ; Point chtld slot to the
: rest of wait-11st (or ntl)

xun_m'an _OROER_METHOD:

; Now wa have set up the wait 11st for the methed.
; We have to mail off a method request to the hometown
; node of the method 1n question (ID in RY).

; Save ID
mmmm : R1 <- Node number of 1D
m m.ai ; Move to
ror ; Restore ID
oc ms(m _REQUEST_MSGC<SYS_LEN Immam e
SENDZ R3,RO ; Send dest rade ¢ & mecsepe
READR l.l L*] s RS <~ This node nusber
SENOZE m.u ; Send mathod~10 & this node ¢
; Wait for mathed reply
KLATE_EXC_END:
o v:crzs: 1P: Y8 SYS_LEN
oc 1P1SYS_ASS wu'«lvs M 3 OBLPAULT
oc IP:SYS_ARS m_rur«m LEN_BIVS) ; ILGINST
oc L) OPTY_FALTCCEYS_LENBITS) : ILAADNO
oc 1P:SYS_ABS | (DPTY_FARLTC(SYS ) 1 ACCESS
oc 1P: SYS_ASS Y_ENCCCSYS,
oc IP1SYS_ABS | (DOTY_FAR TS ) : Lpar
oc 1P:SYS_ARS “FAULTCCOVS_LEN_BITS) i INVADR
oc IP1SYS_ABS| (DPTY_PAULTCCSYS_LEN_BITS) : MIG
oc 1P 1SYS_ABS | (DPTY_FARTCSYS ITS) : QUEUE
oc 1P:SYS_ABS w <SYS )
oc IP:SYS_UNC | S“ CSYS_LEN_SITS)
ot 1P1SYS_ADS ¢ ) i RAE
oc IP1SVS_ANS <Svs_ )
ot 1P1SYS_ARS| (POP ) )
ot IP1OVE_ABS  FALTCISYS_LEN_BITS
oc 1P:SYS_ASS “FAULTCCOYS_LEN_BITS) ; OVERFLOV
oc IP: OPTY_PAULTC(SYS_LEN_BITS) ; TYPe
oc 1P:SYS_ABS | (BPTY_PALTC )
oc IP:SYS_ABS | (BPTY_PARTCCOYS_LEN_BITS) : I8
oc IP:SYS_ABS| (BPTY_FAULT(CSYS_LEN_BITS) ; IC
oc IP:SYS_ABS| (DPTY_FAULTCCSYS| ; 10
0C IP:SYS_ABS| (EMPTY_FAULTCCSYS_LEN_BIVS) ; IE
oc IP:SYS_ASS | (BPTY_PAULTCCSYS_LEN 3 IF
oc IP: SYS_ABS | (DPTY_FALTC(SYS_LEN_BITS
oc 1P:SYS_ABS | (DPTY_FAULTCCSYS_LEN_BITS
oc 1P:SYS_ASS | (BPTY_FANLTCCSYS_LEN_BITS
oc 1P: SYS_ABS | (EMPTY_FAULTCCSYS_LEN_BITS
oc 1P:SYS_ABS | (EMPTY_FAULTCCSYS_LEN_BITS
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IP1SYS_ABS | (EMPTY_FAULTCCSYS_LEN_BITS)

S aARS| (o Ty_FALT OT-LELBITS)

IP: .

1P:SYS_UNCISYS_ABG| Eu CONTEXT, M«Y&Lﬂo.un)
! TRR¢C N

 LEN_S8ITS)
SRS

3
R
o
3

ARRRRARRARRIRARBRER
-1
§
-
i

ERTY,
RS o

o
EXC_VECTORS, END:

i L T
SYS ABS %

IP:SVS_UNC|SYS
SYS_UNC
X 78)
<SYs_LEN J

;
888883388888888888§
FHEE
i
L1}
ST

RON_VERSTON: oc INT:{1<<18}{0
MI%: oc INT:( END - 1024)
™! t oc 0,0.,9,0,0,9,0,0,0,0,0,0,0,0,0,0
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REPLY

RESTANT_CONTEXT

MIGRATE_ONECT

(sslocaor) (resniver-id) (arga)*

(coment-ID) (consens-aian) (valng) .

(clam) (sslecsms) (codey*

(sive) (cless) (id) (sabecice) (dase)™

(objecr-ich) (aode-oumber)

Quanss the contens with

Moves the object wish ID
<object-id> 10 nods smmber
<aods-mumber>



1 SWEEP
NEW_CONTEXT

ID_TO_NODE

FREE_CONTEXT

‘ BRAT_PEEK
¢

Xcall routine number in R3

Size of user space in RO

Size of object in RO
Class of object in R1
Object ID in R1

Block size in RO

Context ID 1o free in ID1

FREE_SPECIFIED_CONTEXT

Context ID 10 free in RO

Context ID 1 restast in RO

Context address in A1

ID 0 hash in RO
ID 0 search for in R1
Base of BRAT table in A2

Descriui

Calls one of the routines defined in
the extended call vector table. This
was implemented since the CALL
vector table was running out of room.

Compacts the hesp.

This routine crestes 8 new context
object with R® words of user space
and returns the context address in Al
and A2. RO is trashed.

Creates a new object of size RO and
class R1, and returns the object's ID
in RO. R1 gets trashed.

Returns a likely node for the object
with ID R1 © be on in R1.

Allocates RO words of physics!
memory and returns the address in
A2,

Frees the context with ID in ID1,
possibly placing it on the context
free list.

Frees the context with ID in RO,

possibly placing it on the context
free list. This trashes RO and R1.

Generates a new ID, and reurns the
IDin RO,

Returns the OS version number in
RO, where the high 16 bits hold the
major value, and the low 16 bits the
minor value.

Transfurs control to the context whose
ID is a RO. This never retums.

Transfers control 00 the context whose
IDis in Al. This never returns.

Hashes the [D in RO 1 find a first
siot in the BRAT 10 seasch. A linesr
search proceeds from there until the ID
in R1 is found. When found, the offset
from the start of the BRAT where this
eatry is located is returned. If not
found, NIL is reaarned.




Nea. Auiyneen
BRAT-RFTER: D oot in RRAT in Rg:

) Addmein R
BRAT XLATE: ID %0 lopkup in BRAT in B9
BRAT_PURGE ID %0 pyngs from BRAT in B¢

MIORATR_ORIBCT  ID of objecs 0 migraw in RS
Node © migrase.objact 10 in R1
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